ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Bliokh K. Y., Usatenko O. V. Two-scale geometric resonance: from parametric resonance in oscillator to thermodynamic cycles. Izvestiya VUZ. Applied Nonlinear Dynamics, 2001, vol. 9, iss. 2, pp. 92-111. DOI: 10.18500/0869-6632-2001-9-2-92-111

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
530, 531, 534,536

Two-scale geometric resonance: from parametric resonance in oscillator to thermodynamic cycles

Autors: 
Bliokh Konstantin Yurevich, Radio Astronomy Institute of the National Academy of Sciences of Ukraine
Usatenko Oleg Viktorovich, Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Ukraine
Abstract: 

Influence of two-scale variations of parameters on the behavior of different dynamic systems is considered. Parametric instability is discovered under these conditions. We call it «two-scale geometric resonance». It can be described with the help of certain geometric structures оп the extended phase space. Two-scale geomefric resonance possesses similar properties and it is described in similar ways in seemingly absolutely different systems. General models are presented in the paper for the two-scale geometric resonance description and specific examples are considered: classical oscillator, Van der Pol oscillator and thermodynamic system with ideal gas.

Key words: 
Reference: 
  1. Arnold VI. Mathematical methods of classical mechanics. Moscow: Nauka; 1989. 472 p.
  2. Cole J. Methods of perturbations in applied mathematics. Moscow: Mir; 1972. 274 p.
  3. Vinitsky SI, Derbov VL, Dubovik BM, Markowski BL, Stepanovsky YP. Topological phases in quantum mechanics and polarization optics. Phys. Usp. 1990;160:6.
  4. Bliokh KY. The appearance оf а geometric-type instability in dynamic systems with adiabatically varying parameters. J. Phys. A: Math. Gen. 1999;32:2551–2565. DOI: 10.1088/0305-4470/32/13/007.
  5. Bliokh KY. Geometric amplitude, adiabatic invariants, quantization, and strong stability of Hamiltonian systems. J. Phys. A: Math. Gen. 2001;43(1):25-42.  DOI:10.1063/1.1418718.
  6. Mishchenko EF, Rozov NKh. Differential Equations with Small Parameter and Relaxation Fluctuations. Moscow: Nauka; 1975. 248 p.
  7. Bakay AC, Stepanovsky YP. Adiabatic Invariants. Kiev: Naukova Dumka, 1981. 284 p.
  8. Panovko YaG. Introduction to the Theory of Mechanical Fluctuations. Moscow: Nauka; 1980. 408 p.
  9. Kronig R dе L, Penney WG. Quantum mechanics of electrons in crystal lattices. Proc. Roy. Soc. А. 1931;103:499–513. DOI: 10.1098/rspa.1931.0019.
  10. Albeverio C, Gestesi F, Heeg-Kron R, Holden H. Solvable Models in Quantum Mechanics. Moscow: Mir; 1991. 568 p.
  11. Seeger K. Physics of Semiconductors. Moscow: Mir; 1977. 616 p.
  12. Brillouin L, Parodi M. Propagation of Waves in Periodic Structures. Moscow: Foreign Literature Publishing House; 1959. 457 p.
  13. Born M, Wolf E. Fundamentals of Optics. Moscow: Nauka; 1970. 856 p.
  14. Elashi S. Waves in active and passive periodic structures. TIIER. 1976;64:12-22.
  15. Bell M. A note оn Mathieu functions. Proceedings оf the Glasgow Mathematical Association. 1957;3:132. DOI: 10.1017/S204061850003358X.
  16. Landau LD, Livshits EM. Theoretical Mechanics. Moscow: Nauka; 1965. 216 p.
  17. Bass FG, Bulgakov AA, Tetervov AP. High-frequency Properties of Semiconductors with Superlattices. Moscow: Nauka; 1989. 288 p.
  18. Anderson PW. Absence оf diffusion in certain random lattices. Phys. Rev. 1958;109:1492. DOI: 10.1103/PhysRev.109.1492.
  19. Zaiman J. Models of Disorder. Moscow: Mir; 1982. 180 p.
  20. Pastur LA, Figotin AL. Random and Almost Periodic Self-conjugate Operators. Moscow: Nauka; 1991. 336 p.
  21. Van Kampen NG. Stochastic Processes in Physics and Chemistry. Moscow: Vysshaya shkola; 1990. 376 p.
Received: 
30.11.2000
Accepted: 
28.02.2001
Published: 
17.07.2001