Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Online)
ISSN 2542-1905 (Print)


Образец для цитирования:

Кузнецов А. П., Рахманова А. Ж., Савин А. В. О влиянии нарушения симметрии на устройство фазового пространства обратимых систем со смешанной динамикой //Изв. вузов. ПНД. 2018. Т. 26, вып. 6. С. 20-31. DOI: https://doi.org/10.18500/0869-6632-2018-26-6-20-31

Опубликована онлайн: 
31.12.2018
Язык публикации: 
русский
УДК: 
530.182, 517.9

О влиянии нарушения симметрии на устройство фазового пространства обратимых систем со смешанной динамикой

Авторы: 
Кузнецов Александр Петрович, Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ)
Рахманова Алия Жавдятовна, Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ)
Савин Алексей Владимирович, Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ)
Аннотация: 

Тема – рассмотрение влияния нарушения симметрии на устройство фазового пространства обратимых систем. Цель – исследование трансформации устройства фазового пространства обратимых систем с симметрией при ее нарушении, в частности, типов возникающих и сосуществующих аттракторов и возможности проявления мультистабильности. Анализ отличия возникающих в этом случае близких к консервативным режимов от аналогичных режимов, возникающих в системах с постоянной слабой диссипацией. Методы – численное моделирование системы связанных фазовых уравнений, описывающих динамику четырех осцилляторов со слабым взаимодействием и с различными функциями связи, как удовлетворяющими условию симметрии, так и приводящими к нарушению это- го условия. Для анализа динамики системы использованы методы построения фазовых портретов и аттракторов и расчета спектра ляпуновских показателей. Проведены поиск устойчивых и неустойчивых периодических режимов и построение многообразий седловых циклов. Результаты. Показано, что при нарушении симметрии в системе связанных фазовых осцилляторов консервативная динамика разрушается, и в фазовом пространстве возникают аттракторы. В отличие от систем с постоянной слабой диссипацией, количество сосуществующих аттракторов невелико, однако возможно возникновение не только периодических, но и хаотических аттракторов, а также гетероклинических структур в фазовом пространстве. Обсуждение. Вследствие того, что исследованная система достаточно проста и является модельной для широкого класса систем различной природы – слабо взаимодействующих цепочек связанных колебательных систем, – можно ожидать, что полученные результаты будут обладать достаточно большой степенью общности.  

DOI: 
10.18500/0869-6632-2018-26-6-20-31
Краткое содержание: 
Полный текст в формате PDF: