ПРЕДСТАВЛЕНИЕ МНОГОГРУППОВОЙ ПОПУЛЯЦИОННОЙ МОДЕЛИ В ВИДЕ ОДНОГРУППОВОЙ МОДЕЛИ СО МНОГИМИ ПАРАМЕТРАМИ

В качестве одного из вариантов нелинейной модели для описания динамики многогрупповой биологической популяции предложена динамическая система, порожденная многомерным логистическим отображением. В некоторых частях компактного фазового пространства данное отображение демонстрирует поведение, нетипичное для одномерного однопараметрического логистического отображения. В биологической модели это проявляется, в первую очередь, в скачкообразном изменении численности как самой популяции в целом, так и ее возрастных групп при малых изменениях возрастной структуры популяции. Кроме того, популяция при изменившейся возрастной структуре может сохранить тип поведения. Изучается механизм возникновения такого поведения многогрупповой популяции.

Ключевые слова: 
-
Литература

1. Leslie P.H. The use of matrices in certain population mathematics // Biometrika. 1945. Vol. 33. P. 183.

2. Geramita J.M. and Pullman M.J. An introduction to the application of nonnegative matrices to biological systems // Queen’s Papers in Pure and Applied Mathematics. Kingston, Ontario, Canada: Queen’s Univ. 1984, No 68.

3. Caswell H. Matrix population models: construction, analysis and interpretation. Sunderland, Massachusettes, USA: Sunauer Associates Inc., 1989.

4. Логофет Д.О. Еще раз о нелинейной модели Лесли: асимптотическое поведение траекторий в примитивном и импримитивном случаях // Докл. АН СССР. 1991. Т. 318, No 5. С. 1077.

5. Панкратова И.Н., Рахимбердиев М.И. О предельных множествах системы дискретных уравнений со скалярной нелинейностью//Известия НАН РК, сер.физ.мат. 1993, No 5. С. 56.

6. Панкратова И.Н. О предельных множествах многомерного аналога нелинейного логистического разностного уравнения // Дифференц. уравнения. 1996. Т. 32, No 7. С. 995.

7. Шарковский А.Н., Коляда С.Ф., Сивак А.Г., Федоренко В.В. Динамика одномерных отображений. Киев: Наукова Думка, 1989.

8. Фейгенбаум М. Универсальность в поведении нелинейных систем // Успехи физ. наук. 1983. Т. 141, No 2. С. 343.

9. Панкратова И.Н. Динамические свойства многомерного аналога нелинейного логистического разностного уравнения для типичных случаев однопараметрической динамики // Известия МОН, НАН РК, сер. физ.-мат. 2001, No 5. С. 55.

10. Панкратова И.Н. Одномерные представления многомерного аналога нелинейного логистического разностного уравнения // Математический журнал. Алматы. 2004. Т. 4, No 1. С. 62.

11. Панкратова И.Н. Сведение многомерного аналога нелинейного логистического разностного уравнения к одномерному // Дифференц. уравнения. 2004. Т. 40, No 11. С. 1570.

12. Постон Т., Стюарт И. Теория катастроф и ее приложения. М.: Мир, 1980.

13. Гантмахер Ф.Р. Теория матриц. М.: Наука, 1988. C. 355.

14. Панкратова И.Н., Рахимбердиев М.И. Канонический вид многомерного аналога нелинейного логистического разностного уравнения // Математический журнал. Алматы. 2003. Т. 3, No 1. С. 54.

Статус: 
одобрено к публикации
Краткое содержание (PDF): 
Текст в формате PDF: