ВОССТАНОВЛЕНИЕ ПО ВРЕМЕННЫМ РЯДАМ АРХИТЕКТУРЫ СВЯЗЕЙ И ПАРАМЕТРОВ ЭЛЕМЕНТОВ В АНСАМБЛЯХ СВЯЗАННЫХ ОСЦИЛЛЯТОРОВ С ЗАДЕРЖКОЙ

Цель. Предложить новый подход к восстановлению архитектуры связей и параметров элементов в ансамблях связанных осцилляторов, описываемых дифференциальными уравнениями первого порядка с запаздыванием, по временным рядам их колебаний.

Метод. Метод основан на минимизации целевой функции, характеризующей расстояние между точками реконструируемой нелинейной функции данного элемента, и разделении восстановленных коэффициентов связи на значимые и незначимые. Минимизация целевой функции осуществляется методом наименьших квадратов. Время запаздывания определяется как соответствующее минимуму целевой функции по всем пробным временам запаздывания.

Результаты. Эффективность предложенного метода продемонстрирована в численном эксперименте на примере хаотических временных рядов ансамбля, состоящего из диффузионно связанных неидентичных уравнений Маккея–Гласса в присутствии шума, а также в натурном эксперименте на примере временных рядов резистивно связанных радиотехнических генераторов с запаздывающей обратной связью. Метод обеспечивает более высокую, чем ранее предложенные подходы, вычислительную эффективность за счёт использования неитерационных алгоритмов минимизации целевой функции и отбора значимых коэффициентов. При этом оценки коэффициентов связи и параметра инерционности являются несмещёнными.

Обсуждение. Метод может быть полезен для восстановления параметров элементов и архитектуры связей в системах различной природы: радиотехнических, биологических и иных, описываемых уравнениями первого порядка с запаздыванием.

 

 

DOI: 10.18500/0869-6632-2016-24-3-21-37

 

Ссылка на статью: Сысоев И.В., Кульминский Д.Д., Пономаренко В.И., Прохоров М.Д. Восстановление по временным рядам архитектуры связей и параметров элементов в ансамблях связанных осцилляторов с задержкой // Известия вузов. Прикладная нелинейная динамика. 2016. Т. 24, No 3. С. 21–37.

 
Литература

1. Afraimovich V.S., Nekorkin V.I., Osipov G.V., Shalfeev V.D. Stability, Structures, and Chaos in Nonlinear Synchronization Networks. Singapore: World Scientific, 1995.

2. Пиковский А., Розенблюм М., Куртс Ю. Синхронизация: Фундаментальное нелинейное явление. М: Техносфера, 2003. 496 c.

3. Boccaletti S., Latora V., Moreno Y., Chavez M., Hwang D.U. // Phys. Rep. 2006. Vol. 424. P. 175.

4. Безручко Б.П., Смирнов Д.А. Математическое моделирование и хаотические временные ряды. Саратов: ГосУНЦ «Колледж», 2005.

5. Timme M. Revealing network connectivity from response dynamics // Phys. Rev. Lett. 2007. Vol. 98. 224101.

6. Smirnov D.A., Bezruchko B.P. Detection of couplings in ensembles of stochastic oscillators // Phys. Rev. E. 2009. Vol. 79. 046204.

7. Kaminski M., Ding M., Truccolo W.A., Bressler S.L.  ́ Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance // Biol. Cybern. 2001. Vol. 85. P. 145.

8. Sysoev I.V., Sysoeva M.V. Detecting changes in coupling with Granger causality method from time series with fast transient processes // Physica D. 2015. Vol. 309. P. 9.

9. Liu H., Lu J.-A., Lu J., Hill D.J.  ̈ Structure identification of uncertain general complex dynamical networks with time delay // Automatica. 2009. Vol. 45. P. 1799.

10. Xu Y., Zhou W., Fang J. Topology identification of the modified complex dynamical network with non-delayed and delayed coupling // Nonlinear Dynamics. 2012. Vol. 68. P. 195.

11. Yang X.L., Wei T. Revealing network topology and dynamical parameters in delay-coupled complex network subjected to random noise // Nonlinear Dynamics. 2015. Vol. 82. P. 319

12. Chen J., Lu J., Zhou J. Topology identification of complex networks from noisy time series using ROC curve analysis // Nonlinear Dynamics. 2014. Vol. 75. P. 761.

13. Zhang Z., Zheng Z., Niu H., Mi Y., Wu S., Hu G. Solving the inverse problem of noise-driven dynamic networks // Phys. Rev. E. 2015. Vol. 91. 012814.

14. Wens V. Investigating complex networks with inverse models: Analytical aspects of spatial leakage and connectivity estimation // Phys. Rev. E. 2015. Vol. 91. 012823.

15. Hale J.K., Lunel S.M.V. Introduction to Functional Differential Equations. New York: Springer, 1993.

16. Kuang Y. Delay Differential Equations with Applications in Population Dynamics. Boston: Academic Press, 1993.

17. Bocharov G.A., Rihan F.A. Numerical modelling in biosciences using delay differential equations // J. Comp. Appl. Math. 2000. Vol. 125. P. 183.

18. Mincheva M., Roussel M.R. Graph-theoretic methods for the analysis of chemical and biochemical networks. II. Oscillations in networks with delays // J. Math. Biol. 2007. Vol. 55. P. 87.

19. Heiligenthal S., Jungling T., D’Huys O., Arroyo-Almanza D.A., Soriano M.C.,  Fischer I., Kanter I., Kinzel W. Strong and weak chaos in networks of semiconductor lasers with time-delayed couplings // Phys. Rev. E. 2013. Vol. 88. 012902.

20. Wu X., Sun Z., Liang F., Yu C. Online estimation of unknown delays and parameters in uncertain time delayed dynamical complex networks via adaptive observer // Nonlinear Dynamics. 2013. Vol. 73. P. 1753.

21. Сысоев И.В., Прохоров М.Д., Пономаренко В.И., Безручко Б.П. Определение параметров элементов и архитектуры связей в ансамблях связанных систем с запаздыванием по временным рядам // ЖТФ. 2014. Т. 84, вып. 10. С. 16.

22. Пономаренко В.И., Прохоров М.Д., Караваев А.С., Безручко Б.П. Определение параметров систем с запаздывающей обратной связью по хаотическим временным реализациям // ЖЭТФ. 2005. Т. 127, вып. 3. С. 515.

23. Prokhorov M.D., Ponomarenko V.I. Estimation of coupling between time-delay systems from time series // Phys. Rev. E. 2005. Vol. 72. 016210.

24. Prokhorov M.D., Ponomarenko V.I. Reconstruction of time-delay systems using small impulsive disturbances // Phys. Rev. E. 2009. Vol. 80. 066206.

25. Мандель И.Д. Кластерный анализ. М: Финансы и статистика, 1988. 176 с.

26. Mackey M.C., Glass L. Oscillations and chaos in physiological control systems //Science. 1977. Vol. 197 P. 287.

Статус: 
одобрено к публикации
Краткое содержание (PDF):