ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Landa P. S. Afterword: So what is turbulence?. Izvestiya VUZ. Applied Nonlinear Dynamics, 1995, vol. 3, iss. 2, pp. 37-41.

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article

Afterword: So what is turbulence?

Autors: 
Landa Polina Solomonovna, Lomonosov Moscow State University
Abstract: 

-

Key words: 
Reference: 
  1. Monin АА, Yaglom АМ. Statistical Fluid Mechanics. Cambridge: MIT Press; 1971. 782 p.
  2. Rytov S.M. In memory of G.S. Gorelik Sov. Phys. Usp. 1957;62(4):485-496. DOI: 10.3367/UFNr.0062.195708h.0485.
  3. Landau LD. On the problem of turbulence. Sov. Phys. Doklady. 1944;4(9):339-342.
  4. Stuart JT. On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 1. The basic behaviour in plane Poiseuille flow. J. Fluid Mech. 1960;9(3):353-370. DOI: 10.1017/S002211206000116X.
  5. Stuart JT. Nonlinear stability theory. Annu. Rev. Fluid Mech. 1971;3:347-370.
  6. Ruelle D, Takens F. On the nature of turbulence. Commun. Math. Phys. 1971;20(3):167-192. DOI: 10.1007/BF01646553.
  7. Ruelle D. Strange attractors as а mathematical explanation of turbulence. In: Rosenblatt M, Van Atta C, editors. Statistical Models and Turbulence. Lecture Notes in Physics. Vol. 12. Berlin: Springer; 1972. P. 292-299. DOI: 10.1007/3-540-05716-1_16.
  8. Ruelle D. The Lorenz attractor and the problem of turbulence. In: Temam R, editor. Turbulence and Navier Stokes Equations. Lecture Notes in Mathematics. Vol. 565. Berlin: Springer; 1976. P. 146-158. DOI: 10.1007/BFb0091453.
  9. Monin AS. On the nature of turbulence. Sov. Phys. Usp. 1978;21:429-442. DOI: 10.1070/PU1978v021n05ABEH005554.
  10. Rabinovich МI. Stochastic self-oscillations and turbulence. Sov. Phys. Usp. 1978;21(5):443-469. DOI: 10.1070/PU1978v021n05ABEH005555.
  11. Gaponov-Grekhov AV, Rabinovich МI, Starobinets IМ. Dynamic model of the spatial development of turbulence. JETP Lett. 1984;39(12):688-691.
  12. Osipov GV. On the development of Landau turbulence in a discrete model of stream systems. Radiophys. Quantum Electron. 1988;31(5):624-627. (in Russian).
  13. Lifshits EM, Pitaevskii LP. Physical Kinetics. М.: Nauka; 1979. 527 p.
  14. Artamonov KI. Thermohydroacoustic Stability. М.: Mashinostroenie; 1982. 261 p.
  15. Neimark YuS, Landa PS. Stochastic and Chaotic Oscillations. Dordrecht:  Kluwer; 1992. 500 p. DOI: 10.1007/978-94-011-2596-3.
  16. Landa PS, Rosenblyum МG. Comparison of methods of phase space construction and determination of the dimension of the attractor based on experimental data. Tech. Phys. 1989;59(11):1-6.
  17. Landa PS, Rosenblum MG. Time series analysis for system identification and diagnostics. Physica D. 1991;48(1):232-254. DOI: 10.1016/0167-2789(91)90059-I.
  18. Nikitin NV. Numerical modelling of the spatial development of turbulence in channels. In: Report at the school “Nonlinear Problems of Theory Hydrodynamic stability”. М.; 1994.
  19. Takens F. Delecting strange attractors in turbulence. In: Rand D, Young LS, editors. Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics. Vol. 898. Berlin: Springer; 1981. P. 366-381. DOI: 10.1007/BFb0091924.
  20. Grassberger P., Procaccia I. Measuring the strangeness of strange attractors. Physica D. 1983;9(1-2):189-208. DOI: 10.1016/0167-2789(83)90298-1.
Received: 
06.01.1995
Accepted: 
14.08.1995
Published: 
15.12.1995