ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Bashkirtseva I. A., Karpenko L. V., Ryashko L. B. Analysis of attractors for stochastically forced «predator–prey» model. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 2, pp. 37-53. DOI: 10.18500/0869-6632-2009-17-2-37-53

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 171)
Language: 
Russian
Article type: 
Article
UDC: 
517.925

Analysis of attractors for stochastically forced «predator–prey» model

Autors: 
Bashkirtseva Irina Adolfovna, Ural Federal University named after the first President of Russia B.N.Yeltsin
Karpenko Larisa Vladimirovna, Ural Federal University named after the first President of Russia B.N.Yeltsin
Ryashko Lev Borisovich, Ural Federal University named after the first President of Russia B.N.Yeltsin
Abstract: 

We consider the population dynamics model «predator–prey». Equilibria and limit cycles of system are studied from both deterministic and stochastic points of view. Probabilistic properties of stochastic trajectories are investigated on the base of stochastic sensitivity function technique. The possibilities of stochastic sensitivity function to analyse details and thin features of stochastic attractors are demonstrated.

Reference: 
  1. Kolmogorov AN. Qualitative study of mathematical models of population dynamics. Cybernetics problems. Moscow: Nauka; 1972, Iss. 25. 100–160 p. (In Russian).
  2. Svirezhev UM, Logofet DO. Resilience of biological communities. Moscow: Nauka; 1978. 352 p. (In Russian).
  3. Bazykin AD. Mathematical biophysics of interacting populations. Moscow: Nauka; 1985. 181 p. (In Russian).
  4. Turchin P. Complex population dynamics: A theoretical/empirical synthesis. New Jersey: Princeton University Press; 2003. 472 p.
  5. Hookenheimer J., Holmes F. Nonlinear oscillations, dynamic systems, and vector field bifurcations. Izhevsk-Moscow: Institute of Computer Sciences; 2002. 559 p. (In Russian).
  6. Anishchenko VS. Complex fluctuations in simple systems. Moscow: Nauka; 1990. 312 p. (In Russian).
  7. Musychuk O.V. Probabilistic characteristics of the predator-victim system with randomly changing parameters. Izvestiya VUZ. Applied Nonlinear Dynamics. 1997;5(2–3):80.
  8. Pontryagin LS, Andronov AA, Witt AA. On statistical consideration of dynamic systems. JETF. 1933. Т. 3, вып. 3. С. 165–180.
  9. Stratonovich RL. Selected issues of the theory of fluctuations in radio engineering. Moscow: Sovet Radio; 1961. 558 p. (In Russian).
  10. Rytov SM. Introduction to stochastic radiophysics. Moscow: Nauka; 1976. 485 p.(In Russian).
  11. Dimentberg MF. Nonlinear stochastic problems of mechanical oscillations.Moscow: Nauka; 1980. 368 p. (In Russian).
  12. Neymark YuI, Landa PS. Stochastic and chaotic fluctuations. Moscow: Nauka; 1987. 422 p.(In Russian).
  13. Anishchenko VS, Vadivasova TE, Neiman AB, Strelkova GI, Schimansky-Geier L. Nonlinear Effects in Chaotic and Stochastic Systems. Izhevsk-Moscow: Institute of Computer Sciences; 2003. (In Russian).
  14. Horsthemke V, Lefebvre R. Noise-induced transitions. Moscow: Mir; 1987. 400 p. (In Russian).
  15. Landa PS, McClintock PVE. Changes in the dynamical behavior of nonlinear systems induced by noise. Physics Reports. 2000;323(1):1–80. DOI: 10.1016/S0370-1573(99)00043-5.
  16. Lindner B, Garcia-Ojalvo J, Neiman A, Schimansky-Geier L. Effects of noise in excitable systems. Physics Reports. 2004;392(6):321–424.
  17. Gammaitoni L. et al. Stochastic resonance. Rev. Mod. Phys. 1998;70(1):223–287. DOI: 10.1103/RevModPhys.70.223.
  18. McDonnell MD, Stocks NG, Pearce CEM, Abbott D. Stochastic resonance: From suprathreshold stochastic resonance to stochastic signal quantization. Cambridge: Cambridge University Press; 2008. 447 p.
  19. Matsumoto K, Tsuda I. Noise induced order. J. Stat. Phys. 1983;31(1):87–106.
  20. Gassmann F. Noise-induced chaos-order transitions. Phys. Rev. E. 1997;55(3):2215–2221. DOI: 10.1103/PHYSREVE.55.2215.
  21. Gao J.B., Hwang S.K., Liu J.M. When can noise induce chaos? Phys. Rev. Lett. 1999;82(6):1132–1136. DOI: 10.1103/PhysRevLett.82.1132.
  22. Zaks MA, Sailer X, Schimansky-Geier L, Neiman AB. Noise induced complexity: from subthreshold oscillations to spiking in coupled excitable systems. Chaos. 2005;15(2):26117. DOI: 10.1063/1.1886386.
  23. Agez G, Glorieux P, Taki M, Louvergneaux E. Two-dimensional noise-sustained structures in optics: Theory and experiments. Phys. Rev. A. 2006;74(4):043814. DOI: 10.1103/PhysRevA.74.043814.
  24. Clerc MG, Falcon C, Tirapegui E. Front propagation sustained by additive noise. Phys. Rev. E. 2006;74(1):011303. DOI: 10.1103/PhysRevE.74.011303.
  25. Arnold L. Random Dynamical Systems. Berlin, Heidelberg: Springer-Verlag, 1998. 586 p.
  26. Blank ML. Finite-dimensional stochastic attractors of infinite-dimensional dynamical systems. Funct. Anal. Appl. 1986;20(2):128–130.
  27. Blank ML. Small perturbations of chaotic dynamical systems. Russian Math. Surveys. 1989;44(6):1–33.
  28. Scheutzow M. Comparison of various concepts of a random attractor: A case study. Arch. Math. 2002;78:233–240. DOI: 10.1007/s00013-002-8241-1.
  29. Schmalfuss B. The random attractor of the stochastic Lorenz system. ZAMP. 1997;48:951–975. DOI: 10.1007/S000330050074.
  30. Lefever R, Turner J. Sensitivity of a Hopf bifurcation to external multiplicative noise. Fluctuations and Sensitivity in Equilibrium Systems. Ed. By Horsthemke W, Kondepudi DK. Berlin: Springer; 1984. 143–149 p.
  31. Lefever R, Turner J. Sensitivity of a Hopf bifurcation to multiplicative colored noise. Phys. Rev. Lett. 1986;56(16):1631–1634. DOI: 10.1103/PhysRevLett.56.1631.
  32. Arnold L., Bleckert G., Schenk-Hoppe K. The stochastic Brusselator: Parametric noise destroys Hopf bifurcation. Stochastic Dynamics. Bremen. 1997. New-York: Springer; 1999. 71–92 p.
  33. Malick K, Marcq P. Stability analysis of noise-induced Hopf bifurcation. Eur. Phys. J. 2003;36:119–128.
  34. Leung HK. Stochastic Hopf bifurcation in a biased van der Pol model. Physica A. 1998;254(1-2):146–155. DOI: 10.1016/S0378-4371(98)00017-X.
  35. Namachchivaya NS. Hopf bifurcation in the presence of both parametric and external stochastic excitations. J. Appl. Mech. 1988;55(4):923–930. DOI: 10.1115/1.3173743.
  36. Schenk-Hoppe KR. Bifurcation scenarios of the noisy Duffing–van der Pol oscillator. Nonlinear Dynamics. 1996;11(3):255–274. DOI: 10.1007/BF00120720.
  37. Bashkirtseva I, Ryashko L, Schurz H. Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances. Chaos, Solitons and Fractals. 2009;39(1):72–82. DOI: 10.1016/j.chaos.2007.01.128.
  38. Bashkirtseva IA, Ryashko LB. Sensitivity analysis of the stochastically and periodically forced Brusselator. Physica A. 2000;278(1):126–139. DOI: 10.1016/S0378-4371(99)00453-7.
  39. Fedotov S, Bashkirtseva I, Ryashko L. Stochastic dynamo model for subcritical transition. Phys. Rev. E. 2006;73(6):066307. DOI: 10.1103/PhysRevE.73.066307.
  40. Ventzel AD, Freidlin MI. Fluctuations in dynamic systems under the influence of small random disturbances. Moscow: Nauka; 1979. 424 p. (In Russian).
  41. Bashkirtseva IA, Ryashko LB. The quasi-potential method in the analysis of the sensitivity of self-oscillations to stochastic disturbances. Izvestiya VUZ. Applied Nonlinear Dynamics. 1998;6(5):19–27.
  42. Bashkirtseva IA, Ryashko LB. Quasipotential method in local stability analysis of the stochastically forces limit cycles. Izvestiya VUZ. Applied Nonlinear Dynamics. 2001;9(6):104–114.
  43. Rosenzweig ML, MacArthur RH. Graphical representation and stability conditions of predator-prey interactions. Amer. Natur. 1963;97:209–223. DOI: 10.1086/282272.
  44. Paladin G, Serva M, Vulpiani A. Complexity in dynamical systems with noise. Phys. Rev. Letters. 1995;74(1):66–69. DOI: 10.1103/PhysRevLett.74.66.
Received: 
25.01.2008
Accepted: 
07.03.2009
Published: 
30.06.2009
Short text (in English):
(downloads: 89)