ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Thiel M., Romano M., Kurts J. . Analytical description of recurrence plots оf white noise and chaotic processes. Izvestiya VUZ. Applied Nonlinear Dynamics, 2003, vol. 11, iss. 3, pp. 20-30. DOI: 10.18500/0869-6632-2003-11-3-20-30

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
English
Heading: 
Article type: 
Article
UDC: 
519.6

Analytical description of recurrence plots оf white noise and chaotic processes

Autors: 
Thiel Marko, Potsdam University
Romano Maria Carmen, Potsdam University
Kurts Jurgen , Potsdam University
Abstract: 

Wе present аn analytical description of the distribution оf diagonal lines in Recurrence Plots for white noise аnd chaotic systems, and find that thе latter one is linked to the correlation entropy. Further ме identify two scaling regions in the distribution оf diagonals for oscillatory chaotic systems that are hinged to two prediction horizons and to the geometry of the attractor. These scaling regions cannot be observed with the Grassberger-Procaccia algorithm. Finally, we propose methods to estimate dynamical invariants from RPs. 

Key words: 
Acknowledgments: 
We thank Vadim Anishchenko very much for the long-standing and very exciting discussions and his suggestions on this work. Moreover we thank Dieter Armbruster, Annette Witt, Udo Schwarz and Norbert Marwan for the fruitful discussions. The project was supported by the «DFG Priority Program 1114».
Reference: 
  1. Poincaré Н. Sur le probléme des trois corps et les équations dе lа dynamique. Acta Math. 1890;13(1–2):1–270. DOI: 10.1007/BF02392505.
  2. Eckmann J-P, Kamphorst SO, Ruelle D. Recurrence plots оf dynamical systems. Europhysics Letters. 1987;4(9):973–977. DOI: 10.1209/0295-5075/4/9/004.
  3. Gao J, Cai H. On the structures and quantification оf recurrence plots. Phys. Lett. A. 1999;270(1–2):75–87. DOI: 10.1016/S0375-9601(00)00304-2.
  4. Marwan N, Wessel N, Meyerfeldt U, Schirdewan А, Kurths J. Recurrence plot based measures оf complexity and its application to heart rate variability data. Phys. Rev. E. 2002;66(2):026702. DOI: 10.1103/PhysRevE.66.026702.
  5. Marwan N, Kurths J. Nonlinear analysis оf bivariate data with cross recurrence plots. Phys. Lett. А. 2002;302(5–6):299–307. DOI: 10.1016/S0375-9601(02)01170-2.
  6. Webber Jr CL, Zbilut JP. Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 1994;76(2):965–973. DOI: 10.1152/jappl.1994.76.2.965.
  7. Zbilut JP, Giuliani A, Webber Jr CL. Recurrence quantification analysis and principal components in the detection оf short complex signals. Phys. Lett. A. 1998;237(3):131–135. DOI: 10.1016/S0375-9601(97)00843-8.
  8. Zbilur JP, Giuliani А, Webber Jr CL. Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification. Phys. Lett. А. 1998;246(1–2):122–128. DOI: 10.1016/S0375-9601(98)00457-5.
  9. Holyst JA, Zebrowska M, Urbanowicz K. Observations оf deterministic chaos in financial time series by recurrence plots, can one control chaotic economy? Eur. Phys. J. B. 2001;20(4):531–535. DOI: 10.1007/PL00011109.
  10. Kurths J, Schwarz U, Sonett CP, Parlitz U. Testing for nonlinearity in radiocarbon data. Nonlinear Processes in Geophysics. 1994;1(1):72–75. DOI: 10.5194/npg-1-72-1994.
  11. Faure P, Korn H. A new method to estimate the Kolmogorov entropy from recurrence plots: its applications to neuronal signals. Physica D. 1998;122(1–4):265–279. DOI: 10.1016/S0167-2789(98)00177-8.
  12. Casdagli MC. Recurrence plots revisited. Physica D. 1997;108(1–2):12–44. DOI: 10.1016/S0167-2789(97)82003-9.
  13. Grassberger Р, Procaccia I. Characterization оf strange attractors. Phys. Rev. Lett. 1983;50(5):346–349. DOI: 10.1103/PhysRevLett.50.346.
  14. Thiel M, Romano MC, Kurths J, Meucci R, Allaria E, Arecchi T. Influence оf observational noise in recurrence quantification analysis. Physica D. 2002;171(3):138–152. DOI: 10.1016/S0167-2789(02)00586-9.
  15. Grassberger Р, Procaccia I. Measuring the strangeness оf strange attractors. Physica D. 1983;9(1–2):189–208. DOI: 10.1016/0167-2789(83)90298-1.
  16. Rényi A. Probability Theory (Appendix). North-Holland: Elsevier; 1970. 666 p.
  17. Grassberger P. Generalized dimensions of strange attractors. Phys. Lett. A. 1983;97(6):227–230. DOI: 10.1016/0375-9601(83)90753-3.
  18. Grassberger P, Procaccia I. Dimensions and entropies of strange attractors from а fluctuating dynamics approach. Physica D. 1984;13(1–2):34–54. DOI: 10.1016/0167-2789(84)90269-0.
  19. Takens Е. Detecting strange attractors in turbulence. In: Rand DA, Young L-S, editors. Dynamical Systems and Turbulence. Lecture Notes in Mathematics, Vol. 898. Berlin: Springer; 1980. P. 366–381. DOI: 10.1007/BFb0091924.
  20. Ruelle D. Deterministic chaos: the science and the fiction. Ргос. В. Soc. Lond. A. 1990;427(1873):241–248. DOI: 10.1098/rspa.1990.0010.
  21. Rassler OE. An equation for continuous chaos. Phys. Lett. A. 1976;57(5):397-398. DOI: 10.1016/0375-9601(76)90101-8.
  22. Alligood KT, Sauer TD, Yorke JA. Chaos: Аn Introduction to Dynamical Systems. New York: Springer; 1996. 603 p. DOI: 10.1007/b97589.
  23. Anishchenko VS, Vadivasova TE, Kopeikin AS, Strelkova GI, Kurths J. Spectral and correlation analysis оf spiral chaos. Fluctuation and Noise Letters. 2003;3(2):L213–L221. DOI: 10.1142/S0219477503001282.
  24. Anishchenko VS, Vadivasova TE, Okrokvertskhov GA, Strelkova GI. Correlation analysis оf dynamical chaos. Physica A. 2003;325(1–2):199–212. DOI: 10.1016/S0378-4371(03)00199-7.
  25. Anishchenko VS, Astakhov V, Neiman A, Vadivasova T, Schimansky-Geier L. Nonlinear Dynamics of Chaotic and Stochastic Systems. Berlin: Springer; 2001. 446 p.
  26. Thiel M, Romano MC, Kurths J. Spurious structures in Recurrence Plots induced by embedding. Chaos (submitted for publication).
  27. Schuster HG. Deterministic Chaos. Wiley VCH; 1984. 220 p.
  28. Raab С, Kurths J. Estimations of large-scale dimensions densities. Phys. Rev. E. 2001;64(1):016216. DOI: 10.1103/PhysRevE.64.016216.
  29. Pompe В. Measuring Statistical Dependences in а Time Series. J. Stat. Phys. 1993;73(3–4):587–610. DOI: 10.1007/BF01054341.
  30. Kantz Н, Schreiber Т. Nonlinear Time Series Analysis. Cambridge: Cambridge University Press; 1997. 369 p.
Received: 
28.08.2003
Accepted: 
05.10.2003
Available online: 
23.11.2023
Published: 
31.12.2003