ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


The article published as Early Access!

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Language: 
Russian
Article type: 
Short communication
UDC: 
530.182
EDN: 

Anisotropy and amplification of terahertz electromagnetic response enabled by direct electric current in graphene

Autors: 
Моисеенко Илья Михайлович, Moscow Institute of Physics and Technology
Fateev Denis Васильевич, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Popov Vyacheslav Valentinovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

The purpose of this study is to investigate the polarization conversion and amplification of electromagnetic terahertz (THz) wave incident normally upon graphene monolayer with direct electric current flowing at arbitrary angle to the elecric vector of incident wave.

Methods. The expressions for the elements of the dynamic conductivity tensor of graphene were obtained in hydrodynamic approximation. The electromagnetic response is calculated by solving the Maxwell equations with standard boundary conditions for lateral components of the electric and magnetic fields.

Results. It is shown that the dynamic conductivity of graphene depends on value and direction of the electron drift velocity even in the absence of the spatial dispersion. This results in the polarization conversion of electromagnetic radiation at THz frequencies. The real parts of elements of graphene dynamic conductivity tensor can become negative which leads to the amplification of THz oscillations.

Conclusion. The polarization conversion and amplification of electromagnetic THz wave incident upon graphene with direct electric current is demonstrated. Polarization conversion efficiency can be as high as 97 percent.

Acknowledgments: 
The work was carried out within the framework of the state task.
Reference: 
  1. Bandurin D. A., Svintsov D., Gayduchenko I., Xu S. G., Principi A., Moskotin M., Tretyakov I., Yagodkin D., Zhukov S., Taniguchi T., Watanabe K., Grigorieva I. V., Polini M., Goltsman G. N., Geim A. K., Fedorov G. Resonant terahertz detection using graphene plasmons // Nat. Commun. 2018. Vol. 9. P. 5392. DOI: 10.1038/s41467-018-07848-w.
  2. Abidi E., Khan A., Delgado-Notario J. A., Clerico V., Calvo-Gallego J, Taniguchi T., Watanabe K., Otsuji T., Velazquez J. E., Meziani Y. M. Terahertz detection by asymmetric dual grating gate bilayer graphene fets with integrated bowtie antenna // Nanomaterials. 2024. Vol. 14, iss. 4. P. 383. DOI: 10.3390/nano14040383. 
  3. Boubanga-Tombet S., Knap W., Yadav D., Satou A., But D. B., Popov V. V., Gorbenko I. V., Kachorovskii V., and Otsuji T. Room-temperature amplification of terahertz radiation by gratinggate graphene structures // Physical Review X. 2020. Vol. 10, iss. 3. P. 031004. DOI: 10.1103/ PhysRevX.10.031004.
  4. Cosme P., Tercas H. Terahertz laser combs in graphene field-effect transistors // ACS Photonics. 2020. Vol. 7, iss. 6. P. 1375–1381. DOI: 10.1021/acsphotonics.0c00313.
  5. Xiao Z., Jiang Z., Wang X., Cui Z. Switchable polarization converter with switching function based on graphene and vanadium dioxide // Journal of Electronic Materials. 2023. Vol. 52, iss. 3. P. 1968–1976. DOI: 10.1007/s11664-022-10149-0.
  6. Polischuk O. V., Melnikova V. S., Popov V. V. Giant cross-polarization conversion of terahertz radiation by plasmons in an active graphene metasurface // Applied Physics Letters. 2016. Vol. 109, iss. 13. DOI: 10.1063/1.4963276.
  7. Guo T., Argyropoulos C. Broadband polarizers based on graphene metasurfaces // Optics letters. 2016. Vol. 41, iss. 23. P. 5592–5595. DOI: 10.1364/OL.41.005592.
  8. Moiseenko I. M., Fateev D. V., Popov V. V. Dissipative drift instability of plasmons in a single-layer graphene // Physical Review B. 2024. Vol. 109, iss. 4. P. L041401. DOI: 10.1103/PhysRevB.109. L041401.
  9. Narozhny B. N. Electronic hydrodynamics in graphene // Annals of Physics. 2019. Vol. 411. P. 167979. DOI: 10.1016/j.aop.2019.167979.
  10. Bandurin D. A., Torre I., Krishna Kumar R., Ben Shalom M., Tomadin A., Principi A., Auton G. H., Khestanova E., Novoselov K. S., Grigorieva I. V., Ponomarenko L. A., Geim A. K., Polini M. Negative local resistance caused by viscous electron backflow in graphene // Science. 2016. Vol. 351, iss. 6277. P. 1055–1058. DOI: 10.1126/science.aad0201.
  11. Kumar C., Birkbeck J., Sulpizio J. A., Perello D., Taniguchi T., Watanabe K., Reuven O., Scaffidi T., Stern Ady, Geim A. K., Ilani S. Imaging hydrodynamic electrons flowing without Landauer–Sharvin resistance // Nature. 2022. Vol. 609, iss. 7926. P. 276–281. DOI: 10.1038/s41586-022-05002-7.
  12. Svintsov D., Vyurkov V., Ryzhii V., and Otsuji T. Hydrodynamic electron transport and nonlinear waves in graphene // Phys. Rev. B. 2013. Vol. 88. P. 245444. DOI: 10.1103/PhysRevB.88.245444.
Received: 
04.05.2024
Accepted: 
02.07.2024
Available online: 
27.09.2024