ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


The article published as Early Access!

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Language: 
Russian
Article type: 
Article
UDC: 
530.182
EDN: 

Application of phase dynamics modeling and recurrence methods to assess the characteristics of the relationship between physiological rhythms

Abstract: 

The purpose of this work is to apply two methods of nonlinear dynamics to assess the characteristics of the relationship between time series extracted from physiological rhythms. The analyzed time series were respiratory rhythm fluctuations, arterial pressure variability curves, and variability of neuronal activity intervals in the medulla oblongata of rats before and during pain exposure.

Methods. To solve the problem of identifying the relationship and assessing the asymmetry and direction of the relationship, a method for modeling the phase dynamics of weakly coupled and weakly noisy systems and a method for calculating averaged conditional probabilities of recurrences of time series generated by interacting systems were used. As characteristics of the relationship between systems, estimates of the intensity of the influence of one system on another and estimates in the differences of the averaged conditional probabilities of recurrences
were used.

Results. To verify the robustness of the applied methods to noise, an analysis of a well-studied model of unidirectionally coupled Van der Pol oscillators was performed. The correct determination of the direction of coupling by both methods with weak noise and a decrease in the possibility of identifying the direction by the phase modeling method with increasing noise, and the preservation of the possibility of correctly determining the direction by the recurrence method were confirmed. For experimentally obtained and weakly noisy biological time series, an asymmetry of the coupling with a predominant influence of the respiratory rhythm on the variability of neuronal activity and arterial pressure, and the influence of arterial pressure variability on the neuronal activity
of the reticular formation of the medulla oblongata was found in most of the analyzed data.

Conclusion. The application of two methods for assessing the characteristics of the relationship between weakly noisy time series, both model and experimental, showed quite consistent results in the predominant influence of one system on the other.
 

Acknowledgments: 
The work was supported by the State funding allocated to the Pavlov Institute of Physiology Russian Academy of Sciences (No. 1021062411784-3-3.1.8).
Reference: 
  1. Kiselev AR, Mironov SA, Karavaev AS, Kulminskiy DD, Skazkina VV, Borovkova EI, Shvartz VA, Ponomarenko VI, Prokhorov MD. A comprehensive assessment of cardiovascular autonomic control using photoplethysmograms recorded from the earlobe and fingers. Physiol. Meas. 2016;37(4):580–595. DOI: 10.1088/0967-3334/37/4/580.
  2. Khorev VS, Ishbulatov JM, Lapsheva EE, Kiselev AR, Gridnev VI, Bezruchko BP, Butenko AA, Ponomarenko VI, Karavaev AS. Diagnostics of directional coupling between blood circulation regulation loops using analysis of time series of mathematical model of human cardiovascular system. Information and Control Systems. 2018;1:42–48. DOI: 10.15217/issn1684-8853.2018.1.42.
  3. Rosenblum MG, Cimponeriu L, Bezerianos A, Patzak A, Mrowka R. Identification of coupling direction: application to cardiorespiratory interaction. Phys. Rev. E. 2002;65(4):041909. DOI: 10.1103/PhysRevE.65.041909.
  4. Shiogai Y, Stefanovska A, McClintock PVE. Nonlinear dynamics of cardiovascular ageing. Phys. Rep. 2010;488(2–3):51–110. DOI: 10.1016/j.physrep.2009.12.003.
  5. Rosenblum M.G., Pikovsky A.S. Detecting direction of coupling in interacting oscillators. Phys. Rev. E. 2001;64(4):045202. DOI: 10.1103/PhysRevE.64.045202.
  6. Bahraminasab A, Ghasemi F, Stefanovska A, McClintock PV, Kantz H. Direction of coupling from phases of interacting oscillators: a permutation information approach. Phys. Rev. Lett. 2008;100(8):084101. DOI: 10.1103/PhysRevLett.100.084101.
  7. Mrowka R, Cimponeriu L, Patzak A, Rosenblum MG. Directionality of coupling of physiological subsystems: age-related changes of cardiorespiratory interaction during different sleep stages in babies. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003;285(6):R1395–R1401. DOI: 10.1152/ajpregu.00373.2003.
  8. Ocon AJ, Medow MS, Taneja I, Stewart JM. Respiration drives phase synchronization between blood pressure and RR interval following loss of cardiovagal baroreflex during vasovagal syncope. Am. J. Physiol. Heart Circ. Physiol. 2011;300(2):H527–H540. DOI: 10.1152/ajpheart.00257.2010.
  9. Dick TE, Hsieh YH, Dhingra RR, Baekey DM, Galan RF, Wehrwein E, Morris KF. Cardiorespira- ´ tory сoupling: сommon rhythms in cardiac, sympathetic, and respiratory activities. Prog Brain Res. 2014;209:191–205. DOI: 10.1016/B978-0-444-63274-6.00010-2.
  10. Hlavackova-Schindler K, Palus M, Vejmelka M, Bhattacharya J. Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 2007;441(1):1–46. DOI: 10.1016/j.physrep.2006.12.004.
  11. Smirnov DA. Quantifying causal couplings via dynamical effects: A unifying perspective. Phys. Rev. E. 2014;90(6):062921. DOI: 10.1103/PhysRevE.90.062921.
  12. Faes L, Nollo G, Chon K. Assessment of Granger causality by nonlinear model identification: application to short-term cardiovascular variability. Ann. Biomed. Eng. 2008;36:381–395. DOI: 10.1007/s10439-008-9441-z.
  13. Schreiber T. Measuring information transfer. Phys. Rev. Lett. 2000;85(2):461–464. DOI: 10.1103/PhysRevLett.85.461.
  14. Baccala LA, Sameshima K. Partial directed coherence: A new concept in neural structure determination. Biol. Cybern. 2001;84(6):463–474. DOI: 10.1007/PL00007990.
  15. Navrotskaya EV, Smirnov DA, Bezruchko BP. Reconstruction of the structure of connections in an ensemble of oscillators from recordings of oscillations through modeling of phase dynamics. Izvestiya VUZ. Applied Nonlinear Dynamics. 2019;27(1):41–52. DOI: 10.18500/0869-6632-2019-27-1-41-52.
  16. Sidak EV, Smirnov DA, Bezruchko BP. Estimation of the time delay of coupling between oscillators from time realizations of oscillation phases for different properties of phase dynamics. Journal of Communications Technology and Electronics. 2017;62(3):241–250. DOI: 10.1134/S1064226917030196.
  17. Romano MC, Thiel M, Kurths J, Grebogi C. Estimation of the direction of the coupling by conditional probabilities of recurrence. Phys. Rev. E. 2007;76(3):036211. DOI: 10.1103/ PhysRevE.76.036211.
  18. Marwan N, Zou Y, Wessel N, Riedl M, Kurths J. Estimating coupling directions in the cardiorespiratory system using recurrence properties. Philos. Trans. A Math. Phys. Eng. Sci. 2013;371: 20110624. DOI: 10.1098/rsta.2011.0624.
  19. Pereda E, Quiroga RQ, Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol. 2005;77(1–2):1–37. DOI: 10.1016/j.pneurobio.2005.10.003.
  20. Sysoeva MV, Sitnikova E, Sysoev IV, Bezruchko BP, van Luijtelaar G. Application of adaptive nonlinear Granger causality: Disclosing network changes before and after absence seizure onset in a genetic rat model. J. Neurosci. Methods. 2014;226:33–41. DOI: 10.1016/j.jneumeth.2014.01.028.
  21. Sysoeva MV, Kuznetsova GD, Sysoev IV. The modeling of rat EEG signals in absence epilepsy in the analysis of brain connectivity. Biophysics. 2016;61(4):661–669. DOI: 10.1134/S0006350916040230.
  22. Smirnov DA, Barnikol UB, Barnikol TT, Bezruchko BP, Hauptmann C, Buhrle C, Maarouf M, Sturm V, Freund H-J, Tass PA. The generation of parkinsonian tremor as revealed by directional coupling analysis. Europhysics Letters. 2008;83(2):20003. DOI: 10.1209/0295-5075/83/20003.
  23. Sysoeva MV, Sysoev IV. Mathematical modeling of encephalogram dynamics during epileptic seizure. Tech. Phys. Lett. 2012;38(2):151–154. DOI: 10.1134/S1063785012020137.
  24. Mokhov II, Smirnov DA. El Nino Southern Oscillation drives North Atlantic Oscillation as revealed with nonlinear techniques from climatic indices. Geophys. Res. Lett. 2006;33(3):L03708. DOI: 10.1029/2005GL024557.
  25. Mokhov II, Smirnov DA, Nakonechny PI, Kozlenko SS, Kurths J. Relationship between ElNino/Southern Oscillation and the Indian monsoon. Izvestiya, Atmospheric and Oceanic Physics. ˜ 2012;48(1):47–56. DOI: 10.1134/S0001433812010082.
  26. Dick ОЕ. Synchronization analysis of time series obtained from anesthetized rats during painful action Izvestiya VUZ Applied Nonlinear Dynamics. 2024;32(2):209–222. DOI: 10.18500/0869-6632-003093.
  27. Marwan N, Romano MC, Thiel M, Kurths J. Recurrence plots for the analysis of complex systems. Phys. Rep.. 2007;438(5–6):237–329. DOI: 10.1016/j.physrep.2006.11.0011.
  28. Takens F. Detecting strange attractors in turbulence. In: Rand D, Young LS, editors. Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics. Vol. 898. Berlin: Springer; 1981. P. 366–381. DOI: 10.1007/BFb0091924.
  29. Kennel MB, Brown R, Abarbanel HD. Determining embedding dimension for phase-spac reconstruction using a geometrical construction. Phys. Rev. A. 1992;45(6):3403–3411. DOI: 10.1103/physreva.45.3403.
  30. Fraser AM, Swinney HL. Independent coordinates for strange attractors from mutual information Phys. Rev. A. 1986;33(2):1134–1140. DOI: 10.1103/physreva.33.1134.
  31. Kurths J, Romano MC, Thiel M, Osipov GV, Ivanchenko MV, Kiss IZ, Hudson JL. Synchronization analysis of coupled noncoherent oscillators. Nonlinear Dyn. 2006;44:135–149. DOI: 10.1007/s11071-006-1957-x.
  32. Smirnov DA, Bezruchko BP. Estimation of interaction strength and direction from short and noisy time series. Phys. Rev. E. 2003;68:046209. DOI: 10.1103/PhysRevE.68.046209.
  33. Smirnov DA. Characterization of weak coupling between self-oscillation systems from short time series: Technique and applications. Journal of Communications Technology and Electronics.2006;51(5):534–544. DOI: 10.1134/S106422690605007X.
  34. Thiel M, Romano MC, Kurths J, Rolfs M, Kliegl R. Generating surrogates from recurrences. Philos. Trans. A Math. Phys. Eng. Sci. 2008;366(1865):545–557. DOI: 10.1098/rsta.2007.2109.
  35. Stefanovska A, Haken H, McClintock PVE, Hozic M, Bajrovic F, Ribaric S. Reversible transitions between synchronization states of the cardiorespiratory system. Phys Rev Lett. 2000;85:4831–4834. DOI: 10.1103/PhysRevLett.85.4831.
  36. Ponomarenko VI, Prokhorov MD, Bespyatov AB, Bodrov MB, Gridnev VI. Deriving main rhythms of the human cardiovascular system from the heartbeat time series and detecting their synchronization. Chaos, Solitons and Fractals. 2005;23(4):1429–1438. DOI: 10.1016/j.chaos.2004.06.041.
  37. Smirnov DA, Bodrov MB, Bezruchko BP. Estimation of coupling between oscillations from time series via phase dynamics modeling: limits of method. Izvestiya VUZ Applied Nonlinear Dynamics. 2004;12(6):79–92. DOI: 10.18500/0869-6632-2004-12-6-79-92.
  38. Daubechies I, Lu J, Wu HT. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 2011;30(2):243–261. DOI: 10.1016/j.acha.2010.08.002.
  39. Dick OE, Glazov AL. Revealing the coupling directionality and synchronization between time series from physiological data by analysis of joint recurrences. Chaos, Solitons and Fractals. 2023;173:113768. DOI: 10.1016/j.chaos.2023.113768.
Received: 
26.10.2024
Accepted: 
31.01.2025
Available online: 
03.02.2025