For citation:
Zulpukarov M. M., Malinetskii G. G., Podlazov A. V. Bifurcation theory inverse problem in a noisy dynamical system. Example solution. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 6, pp. 3-23. DOI: 10.18500/0869-6632-2005-13-5-3-23
Bifurcation theory inverse problem in a noisy dynamical system. Example solution
Bifurcations in nonlinear systems with weak noise are considered. The local bifurcations are discussed: the saddle-node bifurcation, the transcritical bifurcation, the supercritical and subcritical pitchfork bifurcations. Basing on the known prebifurcational noise rise and saturation phenomenon, the inverse problem is introduced: the problem of the bifurcation detection and determining it’s type by the observed noise change (noise deviation growth fashion, saturation level, probability density). The inverse problem solution algorithm is suggested.
- Malinetskiy GG, Potapov AB. Modern Problems of Nonlinear Dynamics. Moscow: URSS; 2002. 336 p. (in Russian).
- Kravtsov YA, Bilchinskaya SG, Butkovskii OY et al. Prebifurcational noise rise in nonlinear systems. J. Exp. Theor. Phys. 2001;93(6):1323–1329. DOI: 10.1134/1.1435756.
- Kuznetsov IV, Malinetski GG, Podlazov AV. About national system of scientific monitoring. Preprint Inst. Appl. Math. the Russian Academy of Science. No. 47. Moscow: Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences; 2004. 30 p. (in Russian).
- Nicolis G, Prigogine I. Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations. New York, London, Sydney, Toronto: J. Wiley & Sons; 1977. 491 p.
- Kapitsa SP, Kurdyumov SP, Malinetskiy GG. Synergetics and Future Forecasts. 3d edition. Moscow: URSS; 2003. 288 p. (in Russian).
- Wiesenfeld K. Virtual Hopf phenomenon: A new precursor of period-doubling bifurcations. Phys. Rev. A. 1985;32(3):1744–1751. DOI: 10.1103/PhysRevA.32.1744.
- Kravtsov YA, Surovyatkina ED. Nonlinear saturation of prebifurcation noise amplification. Phys. Lett. A. 2003;319(3–4):348–351. DOI: 10.1016/j.physleta.2003.10.034.
- Surovyatkina E. Prebifurcation noise amplification and noise-dependent hysteresis as indicators of bifurcations in nonlinear geophysical systems. Nonlinear Processes in Geophysics. 2005;12(1):25–29. DOI: 10.5194/npg-12-25-2005.
- Juel A, Darbyshire AG, Mullin T. The effect of noise on pitchfork and Hopf bifurcations. Proc. R. Soc. Lond. A. 1997;453(1967):2627–2647. DOI: 10.1098/rspa.1997.0140.
- Anishchenko VS, Neiman AB. Structure and properties of chaos in the presence of noise. In: Sagdeev RZ, Frisch U, Hussain F, Moiseev SS, Erokhin NS. Nonlinear Dynamics of Structures. Singapore–New Jersey–London–Hong Kong: World Scientific; 1991. P. 21–48.
- Surovyatkina ED. Rise and saturation of the correlation time near bifurcation threshold. Phys. Lett. A. 2004;329(3):169–172. DOI: 10.1016/j.physleta.2004.06.092.
- Surovyatkina E, Kurths J. Pre-bifurcational noise-dependent phenomena as diagnostic instrument for revealing bifurcations in geophysical systems. Geophysical Research Abstracts. 2005;7:00462.
- Malinetskiy GG. Chaos. Structures. Computational Experiment. Introduction to Nonlinear Dynamics. Moscow: Nauka; 1997. 255 p. (in Russian).
- Iooss J, Joseph D. Elementary Stability and Bifurcation Theory. New York: Springer; 1990. 324 p. DOI: 10.1007/978-1-4612-0997-3.
- Zeldovich YB, Myshkis AD. Elements of Mathematical Physics. Non-Interacting Particle Environment. Moscow: Nauka; 1973. 352 p. (in Russian).
- Fedoryuk MV. Pass Method. Moscow: Nauka; 1977. 368 p. (in Russian).
- Tikhonov AN, Arsenin VY. Methods for Solving Ill-Posed Problems. New York: Wiley; 1979. 288 p.
- 2059 reads