For citation:
Zhusubaliev Z. T., Yanochkina O. O. Bifurcations of a two-dimensional torus in piecewise-smooth dynamical systems. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 6, pp. 86-98. DOI: 10.18500/0869-6632-2009-17-6-86-98
Bifurcations of a two-dimensional torus in piecewise-smooth dynamical systems
Considering a set of coupled nonautonomous differential equations with discontinuous right-hand sides, we discuss two different scenarios for torus birth bifurcations in piecewise-smooth dynamical systems. One scenario is the continuous transformation of the stable equilibrium into an unstable focus period-1 orbit surrounded by a resonant or ergodic torus. Another is the transition from a stable periodic orbit to an invariant torus through a border-collision bifurcation in which two complex-conjugate multipliers jump abruptly from the inside to the outside of the unit circle.
- Filippov AF. Differential equations with a discontinuous right. Moscow: Nauka; 1985. 224 p. (In Russian).
- Feigin MI. Forced oscillations of systems with discontinuous nonlinearities. Moscow: Nauka; 1994. 285 p. (In Russian).
- Zhusubaliyev ZhT, Mosekilde E. Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems. Singapore: World Scientific; 2003. 376 p.
- Leine RI, Nijmeijer H. Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Berlin: Springer Verlag; 2004. 236 p.
- Arnol'd VI, Afraimovich VS, Ilyashenko YuS, Shilnikov LP. Bifurcation theory. Dynamical systems – 5, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr. Moscow: VINITI; 1986. 5–218 p. (In Russian).
- Anishchenko VS, Astakhov VV, Neiman AB, Vadivasova TE, Schimansky-Geier L. Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development. Berlin: Springer; 2007. 429 p.
- Feigin MI. Doubling the period of oscillation at C-bifurcations in piecemeal-continuous systems. Journal of Applied Mathematics and Mechanics. 1970;34(5):861–869.
- di Bernardo M, Feigin MI, Hogan SJ, Homer ME. Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems. Chaos, Solitons and Fractals. 1999;10(11):1881--1908.
- Nusse HE, Yorke JA. Border-collision bifurcations including «period two to period three» for piecewise smooth systems. Physica D. 1992;57(1-2):39–57. DOI: 10.1016/0167-2789(92)90087-4.
- Banerjee S, Ranjan P, Grebogi C. Bifurcations in two-dimensional piecewise smooth maps – theory and applications in switching circuits. IEEE Trans. Circ. Syst. I. 2000;47(5):633--643. DOI: 10.1109/81.847870.
- Zhusubaliyev ZhT, Soukhoterin EA, Mosekilde E. Border-collision bifurcations and chaotic oscillations in a piecewise-smooth dynamical system. Int. J. Bifurcation Chaos. 2001;11(12):2977--3001. DOI: 10.1142/S0218127401003991.
- di Bernardo M, Budd CJ, Champneys AR. Grazing bifurcations in n-dimensional piecewise-smooth dynamical systems. Physica D. 2001;160(3-4):222--254. DOI: 10.1016/S0167-2789(01)00349-9.
- Banerjee S, Verghese GC. (Eds.) Nonlinear phenomena in power electronics. New York: IEEE Press; 2001. 472 p.
- Keener J, Sneyd J. Mathematical Physiology. New York: Springer Verlag; 1998. 767 p.
- Laugesen J, Mosekilde E. Border-collision bifurcations in a dynamic management game. Comp. Oper. Res. 2006;33(2):464--478 p. DOI: 10.1016/j.cor.2004.06.016.
- di Bernardo M, Budd C, Champneys AR, Kowalczyk P, Nordmark AB, Olivar G, Piiroinen PT. Bifurcations in nonsmooth dynamical systems. SIAM Review. 2008;50(4):629--701. DOI: 10.1137/050625060.
- Zhusubaliyev ZhT, Mosekilde E. Torus birth bifurcation in a DC/DC converter. IEEE Trans. Circ. Syst. I. 2006;53(8):1839--1850. DOI: 10.1109/TCSI.2006.879060.
- Zhusubaliyev ZhT, Mosekilde E. Birth of bilayered torus and torus breakdown in a piecewise-smooth dynamical system. Phys. Lett. A. 2006;351(3):167--174. DOI: 10.1016/j.physleta.2005.10.080.
- Zhusubaliyev ZT, Mosekilde E, Maity S, Mohanan S, Banerjee S. Border collision route to quasiperiodicity: Numerical investigation and experimental confirmation. Chaos. 2006;16(2):023122. DOI: 10.1063/1.2208565.
- Kobzev AV. Multi-zone pulse modulation. Novosibirsk: Nauka; 1979. 300 p. (In Russian).
- Kobzev AV, Mikhalchenko GYa, Muzychenko NM. Modulation power sources REA. Tomsk: Radio i svyaz; 1990. 335 p. (In Russian).
- Lai JS, Peng FZ. Multilevel converters – a new breed of power converters. IEEE Trans. Ind. Appl. 1996;32(3):509--517. DOI: 10.1109/28.502161.
- Meynard TA, Foch H, Thomas P, Courault J, Jakob R, Nahrstaedt M. Multicell converters: Basic concepts and industry applications. IEEE Trans. Ind. Electron. 2002;49(5):955--964. DOI: 10.1109/TIE.2002.803174.
- Zhusubaliyev ZhT, Mosekilde E. Direct transition from a stable equilibrium to quasiperiodicity in non-smooth systems. Phys. Lett. A. 2008;372(13):2237--2246. DOI: 10.1016/j.physleta.2007.08.077.
- Helig AKh, Churilov AN. Vibrations and stability of nonlinear pulse systems. St. Petersburg: St. Petersburg University Press; 1993. 264 p. (In Russian).
- Pikovsky A, Rosenblum M, Kurts Yu. Synchronization. A fundamental nonlinear phenomenon. Moscow: Technosphera; 2003. 493 p. (In Russian).
- 2313 reads