ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Malinetskii G. G., Potapov A. B. Channels and jokers: neural view of complex dynamics. Izvestiya VUZ. Applied Nonlinear Dynamics, 1998, vol. 6, iss. 4, pp. 18-30. DOI: 10.18500/0869-6632-1998-6-4-18-30

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(En):
(downloads: 24)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

Channels and jokers: neural view of complex dynamics

Autors: 
Malinetskii Georgij Gennadevich, Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)
Potapov Alexei Borisovich , Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)
Abstract: 

One of the main aspects of brain activity is the ability to predict. Large efforts has been made in nonlinear dynamics to creaie predicting systems for dynamics of complex objects. One of the main tools for making such predictors is the application of multilayer neural networks. The methods based оп the chaos theory prove to be less efficient. and in lact work only for low-dimensional model systems. From our peint of view, the problems here are not technical, but related with the applicability of the approach of low-dimension nonlinear dynamics to real systems. Since the brain and some of its very simple models are able to make predictions in real situations, we propose to unify the ideas of nonlinear dynamics and neural networks. From our point of view, in complex real situations it may be possible to find low-dimensional projections, for which the approaches of noulinear dynamics can be applied, but with serious restrictions. Most concepts, like attractor, its dimension, Lyapunov exponents etc. become inapplicable, and the observed phase space splits into predictable parts {«channels») and non-predictable ones («jokers»), where probabilistic description may be more appropriate. We propose some mathematical basis for this idea and its possible application for time series anaiysis.

Key words: 
Acknowledgments: 
This work was partially supported by RFBR by grants № 96-01-01161, 96-02-18689, 97-01-00396.
Reference: 
  1. Takens F. Detecting strange attractors in turbulence. In: Rand D, Young LS, editors. Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics. Vol 898. Berlin: Springer. P. 366-381. DOI: 10.1007/BFb0091924.
  2. Eckmann JP, Ruelle D. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 1985;57(3):617-656.
  3. Sauer T, Yorke JA, Casdagli M. Embedology J. Stat. Phys. 1991;65:579-616. DOI: 10.1007/BF01053745.
  4. Abarbanel HDI, Brown R, Sidorowich JJ, Tsimring LS. The analysis оf observed chaotic data in physical systems. Rev. Mod. Phys. 1993;65(4):1331-1392. DOI: 10.1103/RevModPhys.65.1331.
  5. Smith LA. Intrinsic limits оn dimension calculations. Phys. Lett. А. 1988;133(6):283-288. DOI: 10.1016/0375-9601(88)90445-8.
  6. Eckmann JP, Ruelle D. Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems. Physica D. 1992;56(2-3):185-187. DOI: 10.1016/0167-2789(92)90023-G.
  7. Ruelle D. Deterministic chaos: the science and the fiction. Proc. Roy. Soc. London А. 1990;427:241-248. DOI: 10.1098/rspa.1990.0010.
  8. Malinetskii GG, Potapov AB, Rakhmanov AI. Limitations оfor delay reconstruction for chaotic dynamical systems. Phys. Rev. E. 1993;48(2):904-912. DOI: 10.1103/PhysRevE.48.904.
  9. Hegger R, Kantz H, Olbrich Е. Problems in the reconstiuction оf high-dimensional deterministic dynamics from time series. In: Kantz H, Kurths J, Mayer-Kress G, editors. Nonlinear Analysis оf Physiological Data. Berlin: Springer; 1998. P. 23-47. DOI: 10.1007/978-3-642-71949-3_3.
  10. Casdagli M. Nonlinear prediction of chaotic time series. Physica D. 1989;35(3):335-356. DOI: 10.1016/0167-2789(89)90074-2.
  11. Lefebvre JH, Goodings DA, Kamath MV, Fallenn EL. Predictability оf normal heart rhythms and deterministic chaos. Chaos. 1993;3(2):267-276. DOI: 10.1063/1.165990.
  12. Gencay R, Dechert W. An algorithm for the n Lyapunov exponents оf аn n-dimensional unknown dynamical system. Physica D. 1992;59(1-3):142-157. DOI: 10.1016/0167-2789(92)90210-E.
  13. Savit R, Green M. Time series and dependent variables. Physica D. 1991;50(1):95-116. DOI: 10.1016/0167-2789(91)90083-L.
  14. Wu K, Savit R, Brock W. Statistical tests for deterministic effects in broad band time series. Physica D. 1993;69(1-2):172-188. DOI: 10.1016/0167-2789(93)90188-7.
  15. Broomhead DS, King GP. Extracting qualitative dynamics from experimental data. Physica D. 1986;20(2-3):217-236. DOI: 10.1016/0167-2789(86)90031-X.
  16. Cenys А, Pyragas K. Estimation of the number of degrees оf freedom from chaotic time series. Phys. Lett. А. 1988;129(4):227-230. DOI: 10.1016/0375-9601(88)90355-6.
  17. Cremers J, Hubler А. Construction of differential equations from experimental data. Z. Naturforsh. А. 1987;42(8):797-802. DOI: 10.1515/zna-1987-0805.
  18. Bellachook LV, Malinetskii GG. Tricks оf jokers on one-dimensional maps. In: Proc. 5 Int. Spec. Workshop: Nonlinear Dynamics of Electronic Systems. Moscow, 1997.
  19. Beachook LV, Malinetskii GG. Tricks оf jokers оn one-dimensional maps. Preprint, Inst. Appl. Math., the Russian Academy of Science. Moscow; 1997. No. 24. 29 p. (in Russian). 
Received: 
15.05.1998
Accepted: 
05.10.1998
Published: 
10.12.1998