ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Serykh I. V., Sonechkin D. M. Chaos and order in athmospheric dynamics part 2. Interannual rhythms of the El Nino – southern oscillation. Izvestiya VUZ. Applied Nonlinear Dynamics, 2017, vol. 25, iss. 5, pp. 5-25. DOI: 10.18500/0869-6632-2017-25-5-5-25

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 107)
Full text PDF(En):
(downloads: 148)
Article type: 

Chaos and order in athmospheric dynamics part 2. Interannual rhythms of the El Nino – southern oscillation

Serykh I. V., P.P Shershov Institue of Oceanology
Sonechkin Dmitrij Mihajlovich, Hydrometeorological Research Centre of Russian Federation

Processes of the El Nino – Southern Oscillation (ENSO) are investigated based on the mathematical theory of the so-called the strange nonchaotic attractor (SNA) in the quasiperiodically forced dynamic systems, and using the sea surface temperature and the atmospheric sea-level pressure data for the 1870–2014 year period. It is found that ENSO is influenced not only by the annual Sun-induced periodic heating of the climate system, but also by the three more other external forces which periods are incommensurable to the annual period. These forces are induced by the 18.6-year Luni-Solar nutation of the Earth’s rotation axis, the 11-year cycle of the solar activity and the Chandler wobble in the Earth’s pole motion (the period 1.2 years). Because of the reciprocal incommensurability of the periods of these forces, all of them affect the climatic system in «improper» time moments. As a result, the dynamics of the indices representing the ENSO processes look to be very complex (strange in mathematical terms), but not chaotic. It is shown that power spectra of the ENSO indices have some bands of the increased spectral density located on sub- and superharmonics of above-mentioned periods. On the basis of some special considerations of structure of the power spectra of the ENSO indices the evidence of the discreteness of these spectra, i.e. the spectra being nonchaoticity, is received. Nobody assumed this circumstance earlier. Despite complexity of the ENSO processes, the dynamics of the temporal variations of these process indices reveals an internal ordering similar to that internal order which is known to be inherent to the SNA dynamics. This ordering reveals itself in the existence of spectral density peaks in the ENSO power spectra, and some rhythms corresponding to these peaks in the temporal variations of the ENSO indices. Acceptance of the SNA model for ENSO means that there are no predictability limits for ENSO in principle. In practice, it opens an opportunity to predict ENSO for several years ahead.

  1. Kurzbach J.E., Bryson R.A. Variance spectrum of Holocene climatic fluctuations in the North Atlantic sector // J. Atmoc. Sci. 1974. Vol. 183. No.4126. P. 709–714.
  2. Mitchell J.M. Note on solar variability and volcanic activity as potential sources of climatic variability // In: The Physical Basis of Climate and Climate modeling. GARP Bull. Series. 1975. No.16. P. 127–131.
  3.  Monin A.S., Shishkov Yu.A. Istoriya klimata. L.: Gidrometeoizdat, 1979. 407 s. (In Russian).
  4. Pelletier J. The power-spectral density of atmospheric temperature from time scales of 102 to 106 yr // Earth Planetary Sci. Lett. 1998. Vol. 158. P. 157–164.
  5. Huybers P., Curry W. Links between annual, Milankovitch and continuum temperature variability // Nature. 2006. Vol. 441. P. 329–332.
  6. Vakulenko N.V., Sonechkin D.M., Ivashchenko N.N., Kotlyakov V.M. On periods of multiplying bifurcation of early Pleistocene glacial cycles. Doklady Earth Sciences. 2011. Vol. 436. No.2. P. 245–248.
  7. Vakulenko N.V., Sonechkin D.M. Evidence of the upcoming end of the contemporary interglacial. Doklady Earth Sciences. 2013. Vol. 452. No. 1. P. 926–929.
  8. Vakulenko N.V., Sonechkin D.M., Kotlyakov V.M. Increase in the global climate variability from about 400 ka bp until present. Doklady Earth Sciences. 2014. Vol. 456. No.2. P. 745–748.
  9. Vakulenko N.V., Ivashchenko N.N., Kotlyakov V.M., Sonechkin D.M. On the periodmultiplying bifurcation of glacial cycles in the Pliocene – Pleistocene. Izvestiya VUZ. Applied nonlinear dynamics. 2013. Vol. 21. No. 2. S. 88–112. (In Russian).
  10. Vakulenko N.V., Sonechkin D.M., Kotlyakov V.M. Is climate predictable on a geological time scale? Doklady Earth Sciences. 2015. Vol. 460. No.1. P. 68–72.
  11. Ivashchenko N.N., Kotlyakov V.M., Sonechkin D.M. et al. On bifurcations inducing glacial cycle lengthening during Pliocene/Pleistocene epoch // Intern. J. Bifurcation and Chaos. 2014. Vol. 24, No. 8. 1440018 (8 pages).
  12. Jin F.F., Neelin J.D., Ghil M. El Nino on the devil’s: annual subharmonic steps to chaos // Science. 1994. Vol. 264. P. 70–72.
  13. Jin F.F., Neelin J.D., Ghil M. El Nino/Southern Oscillation and the annual cycle: Subharmonic frequency locking and aperiodicity // Physica D. 1996. Vol. 98. P. 442–465.
  14. Tziperman E., Stone L., Cane M.A. et al. El Nino chaos: overlapping of resonances between the seasonal cycle and the Pacific ocean – atmosphere oscillator // Science. 1994. Vol. 264. P. 72–74.
  15. Tziperman E., Zebiak S.E., Cane M.A. Mechanisms of seasonal – ENSO interaction // J. Atmos. Sci. 1997. Vol. 54. P. 61–71.
  16. Tziperman E., Cane M.A., Zebiak S.E. et al. Locking of El Nino’s peak time to the end of the calendar year in the delayed oscillator picture of ENSO // J. Climate. 1998. Vol. 9. P. 2191–2199.
  17. Eccles F., Tziperman E. Nonlinear effects on ENSO’s period // J. Atmos. Sci. 2004. Vol. 61. P. 474–482.
  18. Sonechkin D.M. Stokhastichnost’ v modelyakh obshchey tsirkulyatsii atmosfery. L.: Gidrometeoizdat, 1984. 280 s. (In Russian).
  19. Datsenko N.M., Zimin N.E. Proceedings of the USSR Hydrometeorological Center. 1987. Issue. 290. S. 111–127. (In Russian).
  20. Vinogradskaya A.A., Vlasova, Datsenko N.M., Sonechkin D.M. Proceedings of the USSR Hydrometeorological Center. 1988. Issue. 297. S. 166–174. (In Russian).
  21. Torrence C., Compo G.P. A practical guide to wavelet analysis // Bull. Amer. Meteorol. Soc. 1997. Vol. 79, No.1. P. 61–78.
  22. Sonechkin D.M., Ivashchenko N.N. On the role of a quasiperiodic forcing in the interannual and interdecadal climate variations // CLIVAR Exchanges. 2001. Vol. 6, No.1. P. 5–6.
  23.  Sidorenkov N.S. The interaction between Earth’s rotation and geophysical processes. 2009. Wiley-VCH & Co. KCaA, Weinheim, 305 p.
  24. Currie R.G., Hameed S. Evidence of quasi-biennial oscillations in a general circulation model // Geophys. Res. Lett. 1988. Vol. 15. P. 649–652.
  25. Hameed S., Currie R.G., LaGrone H. Signals in atmospheric pressure variations from 2 to 70 months: Part 1. Simulations by two coupled ocean-atmosphere GCMs // Intern. J. Climatol. 2007. Vol. 15. No. 8. P. 853–871.
  26. Allan R.J., Ansell, T.J. A new globally-complete monthly historical gridded mean sea level pressure data set (HadSLP2): 1850–2004 // J. Climate. 2006. Vol. 19. P. 5816–5846.
  27. Rayner N.A., Parker D.E., Horton E.B., Folland C.K., Alexander L.V., Rowell D.P., Kent E.C., Kaplan A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century // J. Geophys. Res. 2003. Vol. 108, No. D14, 4407 10.1029/2002JD002670.
  28. Compo G.P., Whitaker J.S., Sardeshmukh P.D. et al. The Twentieth Century Reanalysis Project // Quarterly J. Roy. Meteorol. Soc. 2011. 137. P. 1–28.
  29. Braganza, K., Gergis J.L., Power S.B., Risbey J.S., Fowler A.M. A multiproxy index of the El Nino–Southern Oscillation, A.D. 1525–1982 // J. Geophys. Res. 2009. 114. D05106.
  30. Lorenz E.N. Deterministic nonperiodic flow // J. Atmos. Sci. 1963. Vol. 20. P. 130–141.
  31. Roessler O.E. Continuous chaos // In: Synergetics, Proceedings Intern. Workshop, Schloss Elmar, Bavaria, 1977: Berlin, 1977. P. 184–197.
  32. Lorenz E.N. A very narrow spectral band // J. Statist. Phys. 1984. Vol. 36, No.1–2. P. 1–14.
  33. Serykh I.V., Sonechkin D.M. Confirmation of the oceanic pole tide influence on El Nino. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz Kosmosa. 2016. Vol. 13, No.2. S. 44–52. (In Russian).
  34. Kim S.-H., Ostlund S. Renormalization of mappings of the two-torus // Physical Review Letters. 1985. Vol. 55. No.1. P. 1165–1168.
  35. Tsonis A.A., Roebber P.J., Elsner J.B. A characteristic time scale in the global temperature record // Geophys. Res. Lett. 1998. Vol. 25. No.15. P. 2821–2823.
  36. Vakulenko N.V., Sonechkin D.M. Evidence of the solar activity’s effect on El Nino – Southern oscillation // Oceanology. 2011. Vol. 51, No. 6. P. 935–939.
  37. Feudel U., Kuznetsov S., Pikovsky A. Strange nonchaotic attractors. Singapore: World Scientific Series on Nonlinear Science, Series A. 2006. Vol. 56.
  38. Bondeson A., Ott E., Antonsen T.M. Quasiperiodic forced damped pendula and Schroedinger equations with quasiperiodic potentials: implications of their equivalence // Phys. Rev. Lett. 1985. Vol. 55. No. 20. P. 2103–2106.
  39. Ditto W.L., Spano M.L., Savege H.T. et al. Experimental observation of a strange nonchaotic attractor // Phys. Rev. Lett. 1990. Vol. 65. No.5. P. 533–536.
Short text (in English):
(downloads: 110)