ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Baranov S. V., Kuznetsov S. P., Ponomarenko V. I. Chaos in the phase dynamics of q­switched van der pol oscillator with additional delayed feedback loop. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 1, pp. 12-23. DOI: 10.18500/0869-6632-2010-18-1-12-23

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 95)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
517.9

Chaos in the phase dynamics of q­switched van der pol oscillator with additional delayed feedback loop

Autors: 
Baranov Stanislav Vladimirovich, Saratov State University
Kuznetsov Sergey Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Ponomarenko Vladimir Ivanovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

We present chaos generator based on a van der Pol oscillator with two additional delayed feedback loops. Oscillator alternately enters active and silence stages due to periodic variation of the parameter responsible for the Andronov–Hopf bifurcation. Excitation of the oscillations on each new activity stage is forced by signal resulting from mixing of the first and the second harmonics of signals from previous activity stages, transported through the feedback loops. The phase difference between each two neighboring succesive activity stages evolves in accordance to the Bernoulli doubling map, with chaotic dynamics. We discuss results of numerical studies: time dependences of variables, attractor portraits, Lyapunov exponents, and power spectrum. The proposed system is implemented as an electronic device, and experimental data are found to be in good correspondence with the computations.

Reference: 
  1. Kuznetsov SP. Example of a physical system with a hyperbolic attractor of the Smale–Williams type. Phys. Rev. Lett. 2005;95(14):144101. DOI: 10.1103/PhysRevLett.95.144101.
  2. Kuznetsov SP, Seleznev EP. A strange attractor of the Smale-Williams type in the chaotic dynamics of a physical system. Journal of Experimental and Theoretical Physics. 2006;102(2):355–364. DOI: 10.1134/S1063776106020166.
  3. Isaeva OB, Jalnine AYu, Kuznetsov SP. Arnold’s cat map dynamics in a system of coupled nonautonomous van der Pol oscillators. Phys. Rev. E. 2006;74:046207. DOI: 10.1103/PhysRevE.74.046207.
  4. Jalnine AYu, Kuznetsov SP. On the realization of the Hunt-Ott strange nonchaotic attractor in a physical system. Technical Physics. 2007;52(4):401–408. DOI: 10.1134/S1063784207040020.
  5. Isaeva OB, Kuznetsov SP, Osbaldestin A. Complex analytic dynamics phenomena in a system of coupled nonautonomous oscillators with alternative excitation. Technical Physics Letters. 2007;33(9):748751. DOI: 10.1134/S1063785007090106.
  6. Kuznetsov AP, Kuznetsov SP, Pikovsky AS, Turukina LV. Chaotic dynamics in the systems of coupling nonautonomous oscillators with resonance and nonresonance communicator of the signal. Izvestiya VUZ. Applied Nonlinear Dynamics. 2007;15(6):7585 (in Russian). DOI: 10.18500/0869-6632-2007-15-6-75-85.
  7. Kuznetsov SP, Ponomarenko VI. Realization of a strange attractor of the Smale-Williams type in a radiotechnical delay-feedback oscillator. Tech. Phys. Lett. 2008;34:771–773. DOI: 10.1134/S1063785008090162.
  8. Kuznetsov SP, Pikovsky AS. Hyperbolic chaos in the phase dynamics of a Q-switched oscillator with delayed nonlinear feedbacks. Europhysics Lett. 2008;84(1):10013. DOI: 10.1209/0295-5075/84/10013.
  9. Farmer DJ. Chaotic attractors of an infinite-dimensional dynamical system. Physica D. Nonlinear Phenomena. 1982;4(3):366393. DOI: 10.1016/0167-2789(82)90042-2.
  10. Kuznetsov SP. Dynamic chaos. 2nd ed. Moscow: Fizmatlit; 2006. 356 p. (in Russian).
  11. Baljakin AA, Ryskin NM. Peculiarities of calculation of the Lyapunov exponents set in distributed self-oscillated systems with delayed feedback. Izvestiya VUZ. Applied Nonlinear Dynamics. 2007;15(6):321 (in Russian). DOI: 10.18500/0869-6632-2007-15-6-3-21.
  12. Hasselblatt B, Pesin Y. Hyperbolic dynamics. Scholarpedia. 2008;3(6):2208. DOI: 10.4249/scholarpedia.2208.
  13. Pesin Y, Hasselblatt B. Partial hyperbolicity. Scholarpedia. 2011;6(10):4845. DOI: 10.4249/scholarpedia.4845.
  14. Dmitriev AS, Panas AI. Dynamic Chaos: Novel Type of Information Carrier for Communications Systems. Moscow: Fizmatlit; 2002. (in Russian).
Received: 
13.04.2009
Accepted: 
15.06.2009
Published: 
31.03.2010
Short text (in English):
(downloads: 46)