ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Hadeeva L. Z., Dmitriev S. V. Characteristics of gap discrete breathers in crystals with NaCl structure. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 6, pp. 85-92. DOI: 10.18500/0869-6632-2010-18-6-85-92

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 115)
Language: 
Russian
Article type: 
Article
UDC: 
53.072:681.3+539.2

Characteristics of gap discrete breathers in crystals with NaCl structure

Autors: 
Hadeeva Lija Zavirovna, Institute of Problems of Metal Superplasticity RAS
Dmitriev Sergej Vladimirovich, Institute of Problems of Metal Superplasticity RAS
Abstract: 

Molecular dynamics method is used to study the effect of mass ratio of anions and cations on the phonon spectra of the crystal with NaCl structure and on the discrete breathers existence  conditions and properties of gap discrete breathers. We show that discrete breathers can be easily excited for the mass ratio less than 0.2, when the gap in the phonon spectrum is wide enough to support them. When the mass ratio is equal to 0.1 we could find at least three types of stable discrete breathers, differed by the number of large amplitude atoms and by polarization of oscillation.

Reference: 
  1. Sievers AJ, Takeno S. Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 1988;61(8):970–973. DOI: 10.1103/PhysRevLett.61.970.
  2. Flach S, Willis CR. Discrete Breathers. Phys. Rep. 1998;295(5):181–264. DOI: 10.1016/S0370-1573(97)00068-9.
  3. Flach S, Gorbach AV. Discrete breathers – Advances in theory and applications. Phys. Rep. 2008;467:1–116. DOI: 10.1016/j.physrep.2008.05.002.
  4. Campbell DK, Flach S, Kivshar YuS. Localizing energy through nonlinearity and discreteness. Physics Today. 2004;57:43–49. DOI: 10.1063/1.1650069.
  5. Manley ME, Sievers AJ, Lynn JW, Kiselev SA, Agladze NI, Chen Y, Llobet A, Alatas A. Intrinsic localized modes observed in the high-temperature vibrational spectrum of NaI. Phys. Rev. B. 2009;79(13):134304. DOI: 10.1103/PhysRevB.79.134304.
  6. Kiselev SA, Sievers AJ. Generation of intrinsic vibrational gap modes in three-dimensional ionic crystals. Phys. Rev. B. 1997;55(9):5755–5758. DOI: 10.1103/PhysRevB.55.5755.
  7. Gorbach AV, Johansson M. Discrete gap breathers in a diatomic Klein–Gordon chain: Stability and mobility. Phys. Rev. E. 2003;67(6):066608. DOI: 10.1103/PhysRevE.67.066608.
  8. James G, Kastner M. Bifurcations of discrete breathers in a diatomic Fermi–Pasta–Ulam chain. Nonlinearity. 2007;20:631–657. DOI: 10.1088/0951-7715/20/3/005.
  9. Dmitriev SV, Medvedev NN, Mulyukov RR, Pozhidaeva OV, Potekaev AI, Starostenkov MD. Localized vibrational modes in an A3B two-dimensional perfect crystal. Russian Physics Journal. 2008;51:858–865. DOI: 10.1007/s11182-009-9112-z.
  10. Dmitriev SV, Sukhorukov AA, Pshenichnyuk AI, Khadeeva LZ, Iskandarov AM, Kivshar YuS. Anti-Fermi-Pasta-Ulam energy recursion in diatomic lattices at low energy densities. Phys. Rev. B. 2009;80:094302. DOI: 10.1103/PhysRevB.80.094302.
  11. Manley ME. Intrinsic localized lattice modes and thermal transport: Potential application in a thermal rectifier. arXiv:0905.2988.
  12. Tharmalingam K. Calculation of energy of formation of vacancy pairs in alkali halides. J. Phys. C. 1970;3:1856–1860. DOI: 10.1088/0022-3719/3/9/004.
Received: 
25.01.2010
Accepted: 
25.10.2010
Published: 
31.01.2011
Short text (in English):
(downloads: 67)