ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Akopov A. A., Vadivasova T. E., Astakhov V. V., Matyushkin D. D. Cluster synchronization in inhomogeneous autooscillation medium. Izvestiya VUZ. Applied Nonlinear Dynamics, 2003, vol. 11, iss. 4, pp. 64-73. DOI: 10.18500/0869-6632-2003-11-4-64-73

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Article type: 

Cluster synchronization in inhomogeneous autooscillation medium

Akopov Artem Aleksandrovich, Saratov State University
Vadivasova Tatjana Evgenevna, Saratov State University
Astakhov Vladimir Vladimirovich, Yuri Gagarin State Technical University of Saratov
Matyushkin Dmitriy Dmitrievich, Saratov State University

Formation of clusters of frequency synchronization is studied for a continuous extended medium with linear mismatch of the natural frequency along a spatial coordinate. We compare the behavior of the continuous medium described by the equation in partial derivatives and of its discrete analogue in the form of a chain of oscillators.

Key words: 
This work was partially supported by the Civilian Research and Development Foundation (CRDF) and the Ministry of Education of the Russian Federation (grant REC-006). The authors are grateful to I.A. Khovanov and A.V. Shabunin for their useful advice and assistance in working on the article.
  1. Kuramoto Y. Chemical Oscillations Waves and Turbulence. Berlin: Springer; 1984. 158 p. DOI: 10.1007/978-3-642-69689-3.
  2. Romanovsky YM, Stepanova HV, Chernavsky DS. Mathematical Biophysics. Moscow: Nauka; 1984. 304 p. (in Russian).
  3. Gaponov-Grekhov AV, Rabinovich МI. Dynamic Chaos in Ensembles of Structures and Spatial Development of Turbulence in Unbounded Systems. N.Y.: Springer; 1986.
  4. Abarbanel HD, Rabinovich MI, Selverston A, Bazhenov MV, Huerta R, Sushchik MM, Rubchinskii LL. Synchronisation in neural networks. Phys. Usp. 1996;39(4):337–362. DOI: 10.1070/PU1996v039n04ABEH000141.
  5. Afraimovich VS, Nekorkin VI, Osipov GV, Shalfeev VD. Stability, Structure and Chaos in Nonlinear Synchronization Networks. Singapore: World Scientific; 1994. 260 p. DOI: 10.1142/2412.
  6. Kostin IK, Romanovsky YM. Fluctuations in systems of many coupled generators. Bulletin of Moscow State University. Ser. Physical and Astronomical. 1972;13(6):698-705 (in Russian).
  7. Aizawa Y. Synergetic approach to the phenomena of mode-locking in nonlinear systems. Progr. Theor. Phys. 1976;56(3):703-716. DOI: 10.1143/PTP.56.703.
  8. Kuramoto Y. Cooperative dynamics оf oscillator community. Progr. Theor. Phys. 1984;79:212-240. DOI: 10.1143/PTPS.79.223.
  9. Ermentrout GB, Kopell N. Frequency plateaus in a chain of weakly coupled oscillators. STAM J. Math. Ann. 1984;15(2):215-237. DOI: 10.1137/0515019.
  10. Yamaguchi Y, Shimizu H. Theory of self-synchronization in the presence of native frequency distribution and external noises. Physica D. 1984;11(1-2):212-226. DOI: 10.1016/0167-2789(84)90444-5.
  11. Sakaguchi H, Shinomoto S, Kuramoto Y. Local and global self-entrainments in oscillator lattices. Progr. Theor. Phys. 1987;77(5):1005-1010. DOI: 10.1143/PTP.77.1005.
  12. Strogatz SH, Mirollo RE. Phase-locking and critical phenomena in lattices оf coupled nonlinear oscillators with random intrinsic frequencies. Physica D. 1988;31(2):143-168. DOI: 10.1016/0167-2789(88)90074-7.
  13. Strogatz SH, Mirollo RE. Collective synchronization in lattices оf nonlinear oscillators with randomness. J. Phys. А. 1988;21(13):L699-L705. DOI: 10.1088/0305-4470/21/13/005.
  14. Afraimovich VS, Nekorkin VI. Stable states in chain models of unlimited nonequilibrium media. Mathematical Modeling. 1992;4(1):83-95 (in Russian).
  15. Osipov GV, Sushchik MM. Synchronized clusters and multistability in arrays оf oscillators with different natural frequencies. Phys. Rev. E. 1998;58(6):7198-7207. DOI: 10.1103/PhysRevE.58.7198.
  16. Anishchenko VS, Aranson IS, Postnov DE, Rabinovich MI. Spatial synchronization and bifurcations of chaos development in a chain of coupled generators. Proc. Acad. Sci. USSR. 1986;286(5):1120-1124 (in Russian).
  17. Astakhov VV, Bezruchko BP, Ponomarenko VI. Multistability and isomer classification and evolution in coupled feigenbaum systems. Radiophys. Quantum Electron. 1991;34(1):28–33. DOI: 10.1007/BF01048411.
  18. Kuznetsov AP, Kuznetsov SP. Critical dynamics of coupled-map lattices at onset of chaos (review). Radiophys. Quantum Electron. 1991;34(10):845–868. DOI: 10.1007/BF01083617.
  19. Kaneko K. Clustering, coding, switching, hierarchal ordering and control in а network оf chaotic elements. Physica D. 1990;41(2):137-172. DOI: 10.1016/0167-2789(90)90119-A.
  20. Braiman Y, Ditto WL, Wiesenfeld K, Spano ML. Disorder-enhanced synchronization. Phys. Lett. А. 1995;206(1-2):54-60. DOI: 10.1016/0375-9601(95)00570-S.
  21. Kocarev L, Paralitz U. Synchronizing spatiotemporal chaos in coupled nonlinear oscillators. Phys. Rev. Lett. 1996;77(11):2206-2209. DOI: 10.1103/PhysRevLett.77.2206.
  22. Osipov GV, Pikovsky AS, Rosenblum MG, Kurths J. Phase synchronization effects in а lattice оf nonidentical Rossler oscillators. Phys. Rev. Е. 1997;55(3):2353-2361. DOI: 10.1103/PhysRevE.55.2353.
  23. Astakhov VV, Anishchenko VV, Kapitaniak T, Shabunin AV. Synchronization of chaotic oscillators by periodic parametric perturbations. Physica D. 1997;109(1-2):11-16. DOI: 10.1016/S0167-2789(97)00153-X.
  24. Pecora LM. Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems. Phys. Rev.E. 1998;58(1):347-360. DOI: 10.1103/PhysRevE.58.347.
  25. Fomin AI, Vadivasova TE, Sosnovtseva OB, Anishchenko VS. Forced phase synchronization of a chain of chaotic oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics. 2000;8(4):103-112 (in Russian).
  26. Lindner JF, Chandramouli S, Bulsara AR, Locher M, Ditto WL. Noise enhanced propagation. Phys. Rev. Lett. 1998;81(23):5048-5051. DOI: 10.1103/PhysRevLett.81.5048.
  27. Neiman А, Schimansky-Geier L, Cornell-Bell А, Moss F. Noise-enhanced synchronization in excitable media. Phys. Rev. Lett. 1999;83(23):4896-4899. DOI: 10.1103/PhysRevLett.83.4896.
  28. Licher M, Cigna Р, Hunt ER. Noise sustained propagation оf а signal in coupled bistable electronic elements. Phys. Rev. Lett. 1998;80(23):5212-5215. DOI: 10.1103/PhysRevLett.80.5212.
  29. Hu B, Zhou C. Phase synchronization in coupled non-identical excitable systems and array-enhanced coherence resonance. Phys. Rev. Е. 2000;61(2):R1001-R1004. DOI: 10.1103/physreve.61.r1001.
  30. Kopeikin AS, Matyushkin DD, Vadivasova TE, Sosnovtseva OB, Anishchenko VS. Synchronization effects in a chain of stochastic bistable oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics. 2001;9(3):61-72 (in Russian).
  31. Loskutov AY, Mikhailov AS. Introduction to Synergetics. Moscow: Nauka; 1990. 272 p. (in Russian).
  32. Elphick C, Hagberg А, Meron Е. Phase front instability in periodically forced oscillatory systems. Phys. Rev. Lett. 1998;80(22):5007-5010. DOI: 10.1103/PhysRevLett.80.5007.
  33. Boccaletti S, Bragard J, Arecchi FT. Controlling and synchronizing space time chaos. Phys. Rev. E. 1999;59(6):6574-6578. DOI: 10.1103/PhysRevE.59.6574.
  34. Chaté H, Pikovsky A, Rudzick O. Forcing oscillatory media: phase kinks vs synchronization. Physica D. 1999;131(1-4):17-30. DOI: 10.1016/S0167-2789(98)00215-2.
  35. Junge L, Parlitz U. Synchronization and control of coupled Ginzburg-Landau equations using local coupling. Phys. Rev. Е. 2000;61(4):3736-3642. DOI: 10.1103/PhysRevE.61.3736.
  36. Park H-K. Frequency locking in spatially extended systems. Phys. Rev. Lett. 2001;86(6):1130-1133. DOI: 10.1103/PhysRevLett.86.1130.
  37. Ermentrout GB, Troy WC. Phase locking in а reaction-diffusion system with а linear frequency gradient. SIAM J. Appl. Math. 1986;39:623-660.
  38. Osipov GB, Sushchik MM. Synchronization and control in chains of connected self-oscillators. In: Bulletin of Nizhny Novgorod State University. Nonlinear Dynamics - Synchronization and Chaos - II. Nizhny Novgorod: Nizhny Novgorod State University Publishing; 1997. P. 5-23 (in Russian).
  39. Vadivasova ТЕ, Strelkova GL, Anishchenko VS. Phase-frequency synchronization in a chain of periodic oscillators in the presence of noise and harmonic forcings. Phys. Rev. Е. 2001;63(3):036225. DOI: 10.1103/PhysRevE.63.036225.
  40. Nekorkin VI, Makarov VA, Velarde MG. Clustering in а chain of bistable nonisochronous oscillators. Phys. Rev. Е. 1998;58(5):5742-5747. DOI: 10.1103/PhysRevE.58.5742.
  41. Sosnovtseva ОМ, Fomin AA, Postnov DE, Anishchenko VS. Clustering оf noise-induced oscillations. Phys. Rev. Е. 2001;64(2):026204. DOI: 10.1103/PhysRevE.64.026204.
  42. Coullet Р, Gil L, Lega J. Defect-mediated turbulence. Phys.Rev.Lett. 1989;62(14):1619-1622. DOI: 10.1103/PhysRevLett.62.1619.
  43. Gil L. Space and time intermittency behaviour of a one-dimensional complex Ginzburg-Landau equation. Nonlinearity. 1991;4(4):1213-1222. DOI: 10.1088/0951-7715/4/4/009.
  44. Shraiman ВL, Pumir А, Van Saarlos W, Hohenberg PC, Chaté H, Holen M. Spatiotemporal chaos in the one-dimensional complex Ginzburg-Landau equation. Physica D. 1992;57(3-4):241-248. DOI: 10.1016/0167-2789(92)90001-4.
  45. Bazhenov MV, Rabinovich MI, Fabrikant AL. The amplitude-phase turbulence transition in а Ginzburg-Landau model аз а critical phenomenon. Phys. Lett. А. 1992;163:87-94.
  46. Cross MG, Hohenberg PC. Pattern formation outside оf equilibrium. Rev. Mod. Phys. 1993;65(3):851-1112. DOI: 10.1103/RevModPhys.65.851.
  47. Chaté H. Spatiotemporal intermittency regimes of the one-dimensional complex Ginzburg-Landau equation. Nonlinearity. 1994;7(1):185-204. DOI: 10.1088/0951-7715/7/1/007.
  48. Samarsky AA, Gulin AB. Numerical Methods. Moscow: Nauka; 1989. 432 p. (in Russian).
Available online: