ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Shenderyuk-Zhidkov A. V., Maksimenko V. A., Hramov A. E. Co-evolution of neurotechnology and AI: ethical challenges and regulatory approaches. Izvestiya VUZ. Applied Nonlinear Dynamics, 2026, vol. 34, iss. 1, pp. 116-160. DOI: 10.18500/0869-6632-003196, EDN: JXIIOD

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Language: 
Russian
Article type: 
Article
UDC: 
004.8
EDN: 

Co-evolution of neurotechnology and AI: ethical challenges and regulatory approaches

Autors: 
Maksimenko Vladimir Aleksandrovich, Immanuel Kant Baltic Federal University
Hramov Aleksandr Evgenevich, Plekhanov Russian University of Economics
Abstract: 

The purpose Purpose of this study is to analyze the ethical challenges at the intersection of neurotechnology and artificial intelligence (AI), and propose regulatory approaches to ensure their responsible development. Special focus is given to personal autonomy, data privacy, social justice, and prevention of mind manipulation.

Methods. The research employs an interdisciplinary approach, including analysis of scientific literature, regulatory frameworks, and positions of religious institutions. Risks associated with AI and neurotechnologies are compared, emphasizing their co-evolution.

Results. Neurotechnologies, unlike AI, pose unique risks such as direct mental interference and threats to identity. Regulatory gaps, including the lack of laws on neurodata, are identified. Adapted ethical frameworks combining transparency, accountability, and human rights protection are proposed.

Conclusion. Recommendations include bans on mind manipulation, mandatory AI content labeling, and human oversight priority. International collaboration and interdisciplinary dialogue are emphasized to mitigate risks and promote sustainable development of these technologies.
 

Reference: 
  1. Hassabis D, Kumaran D, Summerfield C, Botvinick M. Neuroscience-inspired artificial intelligence. Neuron. 2017;95(2):245-258 DOI: 10.1016/j.neuron.2017.06.011.
  2. Karpov OE, Pitsik EN, Kurkin SA, Maksimenko VA, Gusev AV, Shusharina NN, Hramov AE. Analysis of publication activity and research trends in the field of AI medical applications: Network approach. Int. J. Environ. Res. Public Health. 2023;20(7):5335 DOI: 10.3390/ijerph20075335.
  3. Nyholm S . Artificial intelligence and human enhancement: Can AI technologies make us more (artificially) intelligent? Camb Q Healthc Ethics. 2024;33(1):76-88. 10.1017/S096318012300046410.1017/S0963180123000464.
  4. Duan YQ, Edwards JS, Dwivedi YK . Artificial intelligence for decision making in the era of Big Data - evolution, challenges and research agenda. International Journal of Information Management. 2019;48:63-71 DOI: 10.1016/j.ijinfomgt.2019.01.021.
  5. Autor DH . Why are there still so many jobs? The history and future of workplace automation. Journal of Economic Perspectives. 2015;29(3):3-30 DOI: 10.1257/jep.29.3.3.
  6. Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal Prafulla, Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler D, Wu J, Winter C, Hesse Chris, Chen Mark, Sigler E, Litwin M, Gray S, Chess B, Clark J, Berner Ch, McCandlish S, Radford A, Sutskever Ilya, Amodei D. Language models are few-shot learners. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H, editors. Advances in Neural Information Processing Systems. Vol. 33. 2020. P. 1877–1901.
  7. Wang L, T"orngren M, Onori M . Current status and advancement of cyber-physical systems in manufacturing. Journal of Manufacturing Systems. 2015;37:517-527. 10.1016/j.jmsy.2015.04.00810.1016/j.jmsy.2015.04.008.
  8. Topol EJ . High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine. 2019;25(1):44-56 DOI: 10.1038/s41591-018-0300-7.
  9. Karpov OE, Hramov AE . Information Technology, Computing Systems and Artificial Intelligence in Medicine. М.: DPK Press; 2022. 480 p. (in Russian).
  10. Fedorov AA, Kurkin SA, Hramova MV, Hramov AE . Neurotechnology and artificial intelligence as key factors in the customization of the lifelong learning route. Informatics and Education. 2023;38(3):5-15 DOI: 10.32517/0234-0453-2023-38-3-5-15.
  11. Holmes W, Tuomi I . State of the art and practice in AI in education. European Journal of Education. 2022;57(4):542-570 DOI: 10.1111/ejed.12533.
  12. Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, Zdeborov'a L . Machine learning and the physical sciences. Rev Mod Phys. 2019;91(4):045002. 10.1103/RevModPhys.91.04500210.1103/RevModPhys.91.045002.
  13. Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, Lanctot M, Sifre L, Kumaran D, Graepel T, Lillicrap T, Simonyan K, Hassabis D . A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science. 2018;362(6419):1140-1144 DOI: 10.1126/science.aar6404.
  14. Bandettini PA . What's new in neuroimaging methods? Ann NY Acad Sci. 2009;1156:260-293 DOI: 10.1111/j.1749-6632.2009.04420.x.
  15. Hramov AE, Maksimenko VA, Pisarchik AN . Physical principles of brain-computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Phys Rep. 2021;918:1-133 DOI: 10.1016/j.physrep.2021.03.002.
  16. Marzbani H, Marateb HR, Mansourian M . Neurofeedback: a comprehensive review on system design, methodology and clinical applications. Basic Clin Neurosci. 2016;7(2):143-158 DOI: 10.15412/J.BCN.03070208.
  17. Mihara M, Miyai I, Hattori N, Hatakenaka M, Yagura H, Kawano T, Okibayashi M, Danjo N, Ishikawa A, Inoue Y, Kubota K . Neurofeedback using real-time near-infrared spectroscopy enhances motor imagery related cortical activation. PLoS ONE. 2012;7(3):e32234. 10.1371/journal.pone.003223410.1371/journal.pone.0032234.
  18. Hallett M . Transcranial magnetic stimulation: a primer. Neuron. 2007;55(2):187-199. 10.1016/j.neuron.2007.06.02610.1016/j.neuron.2007.06.026.
  19. Rossi S, Hallett M, Rossini P, Pascual-Leone A, The Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008-2039. 10.1016/j.clinph.2009.08.01610.1016/j.clinph.2009.08.016.
  20. Brunoni A, Nitsche M, Bolognini N, Bikson M, Wagner T, Merabet L, Edwards D, Valero-Cabre A, Rotenberg A, Pascual-Leone A, Ferrucci R, Priori A, Boggio P, Fregni F . Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimul. 2012;5(3):175-195 DOI: 10.1016/j.brs.2011.03.002.
  21. Benabid A, Chabardes S, Mitrofanis J, Pollak P . Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease. Lancet Neurol. 2009;8(1):67-81 DOI: 10.1016/S1474-4422(08)70291-6.
  22. Cometa A, Falasconi A, Biasizzo M, Carpaneto J, Horn A, Mazzoni A, Micera S . Clinical neuroscience and neurotechnology: An amazing symbiosis. iScience. 2022;25(10):105124 DOI: 10.1016/j.isci.2022.105124.
  23. Daly JJ, Wolpaw JR . Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 2008;7(11):1032-1043 DOI: 10.1016/S1474-4422(08)70223-0.
  24. Plass-Oude Bos D, Reuderink B, van de Laar B, Gürkök H, Mühl C, Poel M, Nijholt A, Heylen D. Brain-Computer Interfacing and Games. In: Tan D, Nijholt A (eds) Brain-Computer Interfaces. Human-Computer Interaction Series. London: Springer; 2010. P. 149–178. 10.1007/978-1-84996-272-8_1010.1007/978-1-84996-272-8_10.
  25. Marshall D, Coyle D, Wilson S, Callaghan M. Games, gameplay, and BCI: The State of the Art. IEEE Transactions on Computational Intelligence and AI in Games. 2013;5(2):164-176 DOI: 10.1109/tciaig.2013.2263555.
  26. Campbell M, Hoane AJ, Hsu Fh . Deep Blue. Artificial Intelligence. 2002;134(1-2):57-83 DOI: 10.1016/S0004-3702(01)00129-1.
  27. Hsu FH, Anantharaman T, Campbell M, Nowatzyk A. A grandmaster chess machine. Scientific American. 1990;263(4):44-51. https://www.jstor.org/stable/24997060.
  28. He K, Zhang X, Ren S, Sun J . Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV); 2015. p. 1026-1034 DOI: 10.1109/ICCV.2015.123.
  29. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, van den Driessche G, Graepel Th, Hassabis D. Mastering the game of go without human knowledge. Nature. 2017;550(7676):354-359 DOI: 10.1038/nature24270.
  30. Logothetis NK . What we can do and what we cannot do with fMRI. Nature. 2008;453(7197):869-878. . %.97 DOI: 10.1038/nature06976.
  31. Luck SJ . An Introduction to the Event-Related Potential Technique. Massachusetts: MIT Press; 2014. 388 p.
  32. H"am"al"ainen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV . Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 1993;65(2):413-497 DOI: 10.1103/RevModPhys.65.413.
  33. Ferrari M, Quaresima V . A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage. 2012;63(2):921-935 DOI: 10.1016/j.neuroimage.2012.03.049.
  34. Grau C, Ginhoux R, Riera A, Nguyen TL, Chauvat H, Berg M, Amengual JL, Pascual-Leone A, Ruffini G . Conscious brain-to-brain communication in humans using non-invasive technologies. PLoS ONE. 2014;9(8):e105225 DOI: 10.1371/journal.pone.0105225.
  35. Nam CS, Traylor Z, Chen M, Jiang X, Feng W, Chhatbar PY . Direct communication between brains: A systematic PRISMA review of brain-to-brain interface. Front Neurorobot. 2021;15:656943 DOI: 10.3389/fnbot.2021.656943.
  36. Maksimenko VA, Hramov AE, Frolov NS, L"uttjohann A, Nedaivozov VO, Grubov VV, Runnova AE, Makarov VV, Kurths J, Pisarchik AN . Increasing human performance by sharing cognitive load using brain-to-brain interface. Front Neurosci. 2018;12:949 DOI: 10.3389/fnins.2018.00949.
  37. Kurkin S, Gordleeva S, Savosenkov A, Grigorev N, Smirnov N, Grubov VV, Udoratina A, Maksimenko V, Kazantsev V, Hramov AE . Transcranial Magnetic Stimulation of the Dorsolateral Prefrontal Cortex Increases Posterior Theta Rhythm and Reduces Latency of Motor Imagery. Sensors. 2023;23(10):4661 DOI: 10.3390/s23104661.
  38. Musk E . An integrated brain-machine interface platform with thousands of channels. J Med Internet Res. 2019;21(10):e16194 DOI: 10.2196/16194.
  39. Pisarchik AN, Maksimenko VA, Hramov AE . From novel technology to novel applications: Comment on ``An Integrated Brain-Machine Interface Platform With Thousands of Channels'' by Elon Musk and Neuralink. J. Med. Internet. Res. 2019;21(10):e16356 DOI: 10.2196/16356.
  40. Opie NL, John SE, Rind GS, Ronayne SM, Wong YT, Gerboni G, Yoo PE, Lovell T, Scordas T, Wilson SL, Dornom A, Vale T, O'Brien TJ, Grayden DB, May CN, Oxley ThJ. Focal stimulation of the sheep motor cortex with a chronically implanted minimally invasive electrode array mounted on an endovascular stent. Nat Biomed Eng. 2018;2(12):907-914. 10.1038/s41551-018-0321-z10.1038/s41551-018-0321-z.
  41. Filipova IA . Neurotechnologies: development, practical application and regulation. Bulletin of St Petersburg State University Law. 2021;12(3):502-521 DOI: 10.21638/spbu14.2021.302.
  42. Lecomte P . Umwelt as the foundation of an ethics of smart environments. Humanit Soc Sci Commun. 2023;10:925 DOI: 10.1057/s41599-023-02356-9.
  43. Ienca M, Andorno R . Towards new human rights in the age of neuroscience and neurotechnology. Life Sci Soc Policy. 2017;13(5):1-27 DOI: 10.1186/s40504-017-0050-1.
  44. Kellmeyer P . Big brain data: On the responsible use of brain data from clinical and consumer-dire-cted neurotechnological devices. Neuroethics. 2018;14:83-98 DOI: 10.1007/s12152-018-9371-x.
  45. Mittelstadt BD, Allo P, Taddeo M, Wachter S, Floridi L . The ethics of algorithms: Mapping the debate. Big Data and Society. 2016;3(2):2053951716679679 DOI: 10.1177/2053951716679679.
  46. Floridi L, Cowls J, Beltrametti M, Chatila R, Chazerand P, Dignum V, Luetge C, Madelin R, Pagallo U, Rossi F, Schafer B, Valcke P, Vayena E . AI4People-An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds Mach. 2018;28(4):689-707 DOI: 10.1007/s11023-018-9482-5.
  47. Calo R . Artificial Intelligence Policy: A Primer and Roadmap. UCD L Rev. 2017;51:399.
  48. Battista D . Political communication in the age of artificial intelligence: an overview of deepfakes and their implications. Society Register. 2024;8(2):7-24 DOI: 10.14746/sr.2024.8.2.01.
  49. Gambín AF, Yazidi A, Vasilakos A, Haugerud H, Djenouri Y . Deepfakes: current and future trends. Artif Intell Rev. 2024;57(3):64 DOI: 10.1007/s10462-023-10679-x.
  50. Chesney R, Citron D . Deepfakes and the new disinformation war: The coming age of post-truth geopolitics. Foreign Affairs. 2019;98(1):147-155.
  51. Maras MH, Alexandrou A . Determining authenticity of video evidence in the age of artificial intelligence and in the wake of Deepfake videos. The International Journal of Evidence and Proof. 2019;23(3):255-262 DOI: 10.1177/1365712718807226.
  52. Citron DK, Chesney R . Deep fakes: A looming challenge for privacy, democracy, and national security. California Law Review. 2019;107(6):1753-1819.
  53. Memarian B, Doleck T . ChatGPT in education: Methods, potentials and limitations. Computers in Human Behavior: Artificial Humans. 2023;1(6):100022 DOI: 10.1016/j.chbah.2023.100022.
  54. Adeshola I, Adepoju AP . The opportunities and challenges of ChatGPT in education. Interactive Learning Environments. 2024;32(10):6159-6172 DOI: 10.1080/10494820.2023.2253858.
  55. Berger S, Rossi F . AI and neurotechnology: learning from AI ethics to address an expanded ethics landscape. Communications of the ACM. 2023;66(3):58-68 DOI: 10.1145/3529088.
  56. Huang C, Zhang Z, Mao B, Yao X . An overview of artificial intelligence ethics. IEEE Transactions on Artificial Intelligence. 2022;4(4):799-819 DOI: 10.1109/TAI.2022.3194503.
  57. Bostrom N. Ethical issues in advanced artificial intelligence. In: Machine Ethics and Robot Ethics. London: Routledge; 2020. P. 69-75 DOI: 10.4324/9781003074991-7.
  58. Mittelstadt B . Principles alone cannot guarantee ethical AI. Nat Mach Intell. 2019;1(11):501-507 DOI: doi.org/10.1038/s42256-019-0114-4.
  59. Ruiz S, Valera L, Ramos P, Sitaram R . Neurorights in the Constitution: from neurotechnology to ethics and politics. Philosophical Transactions B. 2024;379(1915):20230098. 10.1098/rstb.2023.009810.1098/rstb.2023.0098.
  60. Robinson JT, Rommelfanger KS, Anikeeva PO, Etienne A, French J, Gelinas J, Grover P, Picard R . Building a culture of responsible neurotech: Neuroethics as socio-technical challenges. Neuron. 2022;110(13):2057-2062 DOI: 10.1016/j.neuron.2022.05.005.
  61. Illes J . Neuroethics: Anticipating the Future. NY: Oxford University Press; 2017.
  62. Sample M., Racine E. Pragmatism for a digital society: The (in)significance of artificial intelligence and neural technology. In: Friedrich O., Wolkenstein A., Bublitz C., Jox R.,J., Racine E., editors. Clinical Neurotechnology meets Artificial Intelligence. Advances in Neuroethics. Cham: Springer; 2021. P. 81-100 DOI: 10.1007/978-3-030-64590-8_7.
  63. Savage N . How AI and neuroscience drive each other forwards. Nature. 2019;571(7766):S15-S17 DOI: 10.1038/d41586-019-02212-4.
  64. Raichle ME . A brief history of human brain mapping. Trends Neurosci. 2009;32(2):118-126 DOI: 10.1016/j.tins.2008.11.001.
  65. Friston KJ . Modalities, modes, and models in functional neuroimaging. Science. 2009;326(5951):399-403 DOI: 10.1126/science.1174521.
  66. Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipovi'c SR, Grefkes C, Hasan A, Hummel FC, J"a"askel"ainen SK, Langguth B, Leocani L, Londero A, Nardone R, NguyenJ-P, Nyffeler Th, Oliveira-Maia AJ, Oliviero A, Padberg F, Palm U, Paulus W, Poulet E, Quartarone A, Rachid F, Rektorová I, Rossi S, Sahlsten H, Schecklmann M, Szekely D, Ziemann U. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol. 2020;131(5):474-528 DOI: 10.1016/j.clinph.2019.11.002.
  67. Benabid AL, Chabardes S, Mitrofanis J, Pollak P . Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease. Lancet Neurol. 2009;8(1):67-81. 10.1016/S1474-4422(08)70291-610.1016/S1474-4422(08)70291-6. %.95.
  68. Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, Oommen K, Osorio I, Nazzaro J, Labar D, Kaplitt M, Sperling M, Sandok E, Neal J, Handforth A, Stern J, DeSalles A, Chung S, Shetter A, Bergen D, Bakay R, Henderson J, French J, Baltuch G, Rosenfeld W, Youkilis A, Marks W, Garcia P, Barbaro N, Fountain N, Bazil C, Goodman R, McKhann G, Krishnamurthy KB, Papavassiliou S, Epstein Ch, Pollard J, Tonder L, Grebin J, Coffey R, Graves N, the SANTE Study Group. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51(5):899-908 DOI: 10.1111/j.1528-1167.2010.02536.x.
  69. Bonomo R, Elia AE, Bonomo G, Romito LM, Mariotti C, Devigili G, Cilia R, Giossi R, Eleopra R. Deep brain stimulation in Huntington’s disease: a literature review. Neurological Sciences. 2021;42(11):4447-4457 DOI: 10.1007/s10072-021-05527-1.
  70. Ramachandran VS, Rogers-Ramachandran D . Phantom limbs and neural plasticity. Arch Neurol. 2000;57(3):317-320 DOI: 10.1001/archneur.57.3.317.
  71. Khorev V, Kurkin S, Badarin A, Antipov V, Pitsik E, Andreev A, Grubov V, Drapkina O, Kiselev A, Hramov A. Review on the use of brain computer interface rehabilitation methods for treating mental and neurological conditions. J Integr Neurosci. 2024;23(7):125 DOI: 10.31083/j.jin2307125.
  72. Kuo MF, Nitsche MA . Effects of transcranial electrical stimulation on cognition. Clin EEG Neurosci. 2012;43(3):192-199 DOI: 10.1177/1550059412444975.
  73. Anguera JA, Boccanfuso J, Rintoul JL, Al-Hashimi O, Faraji F, Janowich J, Kong E, Larraburo Y, Rolle C, Johnston E, Gazzaley A . Video game training enhances cognitive control in older adults. Nature. 2013;501(7465):97-101 DOI: 10.1038/nature12486.
  74. Grubov VV, Khramova MV, Goman S, Badarin AA, Kurkin SA, Andrikov DA, Pitsik E, Antipov V, Petushok E, Brusinskii N, Bukina T, Fedorov AA, Hramov AE . Open-loop neuroadaptive system for enhancing student's cognitive abilities in learning. IEEE Access. 2024;12:49034-49049 DOI: 10.1109/access.2024.3383847.
  75. Bukina TV, Khramova MV, Kurkin SA, Andrikov DA, Goman SS, Dedkov AE, Hramov AE . Neuroeducational software recommendational service as a tool for personalizing the educational process. Informatics and Education. 2024;39(5):50-62. 10.32517/0234-0453-2024-39-5-50-6210.32517/0234-0453-2024-39-5-50-62.
  76. Donati AR, Shokur S, Morya E, Campos DS, Moioli RC, Gitti CM, Augusto PB, Tripodi S, Pires CG, Pereira GA, Brasil FL, Gallo S, Lin AA, Takigami AK, Aratanha MA, Joshi S, Bleuler H, Cheng G, Rudolph A, Nicolelis MAL. Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci Rep. 2016;6:30383 DOI: 10.1038/srep30383.
  77. Poppe C, Elger BS. Brain–computer interfaces, completely locked-in state in neurodegenerative diseases, and end-of-life decisions. Journal of Bioethical Inquiry. 2024;21(1):19-27. 10.1007/s11673-023-10256-510.1007/s11673-023-10256-5.
  78. K"ubler A, Neumann N . Brain-computer interfaces-the key for the conscious brain locked into a paralyzed body. Prog Brain Res. 2005;150:513-525 DOI: 10.1016/S0079-6123(05)50035-9.
  79. Lebedev MA, Nicolelis MA . Brain-machine interfaces: past, present and future. Trends Neurosci. 2006;29(9):536-546 DOI: 10.1016/j.tins.2006.07.004.
  80. Veena N, Anitha N . A review of non-invasive BCI devices. Int J Biomed Eng Technol. 2020;34(3):205-233 DOI: 10.1504/IJBET.2020.111471.
  81. Grill WM, Norman SE, Bellamkonda RV . Implanted neural interfaces: biochallenges and engineered solutions. Annu Rev Biomed Eng. 2009;11:1-24 DOI: 10.1146/annurev-bioeng-061008-124927.
  82. Salatino JW, Ludwig KA, Kozai TDY, Purcell EK . Glial responses to implanted electrodes in the brain. Nat Biomed Eng. 2017;1(11):862-877 DOI: 10.1038/s41551-017-0154-1.
  83. Rossi S, Hallett M, Rossini PM, Pascual-Leone A, The Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008-2039. 10.1016/j.clinph.2009.08.01610.1016/j.clinph.2009.08.016.
  84. Kringelbach ML, Jenkinson N, Owen SL, Aziz TZ. Translational principles of deep brain stimulation. Nature Reviews Neuroscience. 2007;8(8):623-635 DOI: 10.1038/nrn2196.
  85. Bergey GK, Morrell MJ, Mizrahi EM, Goldman A, King-Stephens D, Nair D, Srinivasan S, Jobst B, Gross RE, Shields DC, Barkley G, Salanova V, Olejniczak P, Cole A, Cash SS, Noe K, Wharen R, Worrell G, Murro AM, Edwards J, Duchowny M, Spencer D, Smith M, Geller E, Gwinn R, Skidmore Ch, Eisenschenk S, Berg M, Heck Ch, Van Ness P, Fountain N, Rutecki P, Massey A, O'Donovan C, Labar D, Duckrow RB, Hirsch LJ, Courtney T, Sun FT, Seale CG. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology. 2015;84(8):810-817 DOI: 10.1212/WNL.0000000000001280.
  86. Deer TR, Pope JE, Hayek SM, Bux A, Buchser E, Eldabe S, De Andrés JA, Erdek M, Patin D, Grider JS, Doleys DM, Jacobs MS, Yaksh TL, Poree L, Wallace MS, Prager J, Rauck R, DeLeon O, Diwan S, Falowski SM, Gazelka HM, Kim P, Leong M, Levy RM, McDowell G II, McRoberts P, Naidu R, Narouze S, Perruchoud C, Rosen SM, Rosenberg WS, Saulino M, Staats P, Stearns LJ, Willis D, Krames E, Huntoon M, Mekhail N . The Polyanalgesic Consensus Conference (PACC): Recommendations on Intrathecal Drug Infusion Systems Best Practices and Guidelines. Neuromodulation. 2017;20(2):96-132 DOI: 10.1111/ner.12538.
  87. Deisseroth K . Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci. 2015;18(9):1213-1225 DOI: 10.1038/nn.4091.
  88. LeCun Y, Bengio Y, Hinton G . Deep learning. Nature. 2015;521(7553):436-444. 10.1038/nature1453910.1038/nature14539.
  89. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwana-than S, Garnett R, editors. Advances in Neural Information Processing Systems. vol. 30. Curran Associates, Inc.; 2017. p. 5998-6008.
  90. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. In: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2. NIPS'14. Cambridge: MIT Press; 2014. p. 2672–2680.
  91. Krizhevsky A, Sutskever I, Hinton GE . ImageNet classification with deep convolutional neural networks. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 1. NIPS'12. Red Hook, NY, USA: Curran Associates Inc.; 2012. p. 1097–1105.
  92. He K, Zhang X, Ren S, Sun J . Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016. P. 770-778 DOI: 10.1109/CVPR.2016.90.
  93. Qi CR, Su H, Mo K, Guibas LJ . PointNet: Deep learning on point sets for 3D classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017. p. 77-85 DOI: 10.1109/CVPR.2017.16.
  94. Girshick R, Donahue J, Darrell T, Malik J . Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2014. p. 580-587 DOI: 10.1109/CVPR.2014.81.
  95. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S . Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115-118 DOI: 10.1038/nature21056.
  96. LeCun Y, Bottou L, Bengio Y, Haffner P . Gradient-based learning applied to document recognition. Proceedings of the IEEE. 1998;86(11):2278-2324 DOI: 10.1109/5.726791.
  97. Chen C, Seff A, Kornhauser A, Xiao J . DeepDriving: Learning affordance for direct perception in autonomous driving. In: 2015 IEEE International Conference on Computer Vision (ICCV); 2015. p. 2722-2730 DOI: 10.1109/ICCV.2015.312.
  98. Loquercio A, Maqueda AI, del Blanco CR, Scaramuzza D . DroNet: Learning to fly by driving. IEEE Robotics and Automation Letters. 2018;3(2):1088-1095 DOI: 10.1109/LRA.2018.2795643.
  99. Pinto L, Gupta A . Supersizing self-supervision: Learning to grasp from 50K tries and 700 robot hours. In: 2016 IEEE International Conference on Robotics and Automation (ICRA); 2016. p. 3406-3413 DOI: 10.1109/ICRA.2016.7487517.
  100. Kober J, Bagnell JA, Peters J . Reinforcement learning in robotics: A survey. The International Journal of Robotics Research. 2013;32(11):1238-1274 DOI: 10.1177/0278364913495721.
  101. Koopman P, Wagner M . Autonomous vehicle safety: An interdisciplinary challenge. IEEE Intelligent Transportation Systems Magazine. 2017;9(1):90-96 DOI: 10.1109/MITS.2016.2583491.
  102. Leveson NG . Engineering a Safer World: Systems Thinking Applied to Safety. Cambridge: MIT Press; 2011. . %.97 DOI: 10.7551/mitpress/8179.001.0001.
  103. Jurafsky D, Martin JH . Speech and Language Processing. Harlow: Pearson Education; 2020.
  104. Goodman B, Flaxman S . European Union regulations on algorithmic decision-making and a ``right to explanation''. AI Magazine. 2017;38(3):50-57.
  105. Ribeiro MT, Singh S, Guestrin C . ``Why Should I Trust You?'': Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD '16. New York, NY, USA: Association for Computing Machinery; 2016. p. 1135–1144 DOI: 10.1145/2939672.2939778.
  106. Caruana R, Lou Y, Gehrke J, Koch P, Sturm M, Elhadad N . Intelligible models for healthcare: Predic-ting pneumonia risk and hospital 30-day readmission. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD '15. NY: Association for Computing Machinery; 2015. P. 1721–1730. 10.1145/2783258.278861310.1145/2783258.2788613.
  107. Bassett DS, Khambhati AN . A network engineering perspective on probing and perturbing cognition with neurofeedback. Ann. NY Acad. Sci. 2017;1396(1):126-143. 10.1111/nyas.1333810.1111/nyas.13338.
  108. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y . Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230-243 DOI: 10.1136/svn-2017-000101.
  109. Yuste R, Goering S, Arcas BAY, Bi G, Carmena JM, Carter A, Fins JJ, Friesen P, Gallant J, Huggins JE, Illes J, Kellmeyer P, Klein E, Marblestone A, Mitchell C, Parens E, Pham M, Rubel A, Sadato N, Sullivan LS, Teicher M, Wasserman D, Wexler A, Whittaker M, Wolpaw J . Four ethical priorities for neurotechnologies and AI. Nature. 2017;551(7679):159-163 DOI: 10.1038/551159a.
  110. Plis SM, Hjelm DR, Salakhutdinov R, Allen EA, Bockholt HJ, Long JD, Johnson HJ, Paulsen JS, Turner JA, Calhoun VD . Deep learning for neuroimaging: a validation study. Front Neurosci. 2014;8:229 DOI: 10.3389/fnins.2014.00229.
  111. Pisarchik AN, Maksimenko VA, Andreev AV, Frolov NS, Makarov VV, Zhuravlev MO, Runnova AE, Hramov AE . Coherent resonance in the distributed cortical network during sensory information processing. Sci Rep. 2019;9(1):18325 DOI: 10.1038/s41598-019-54577-1.
  112. Dedkov AE, Andrikov DA, Hramov AE . A review of ways to measure brain cognitive load and machine learning methods for their identification from EEG data. Medical Doctor and Information Technologies. 2024(3):20-31 DOI: 10.25881/18110193_2024_3_20.
  113. Shatte ABR, Hutchinson DM, Teague SJ . Machine learning in mental health: A scoping review of meth-ods and applications. Psychol Med. 2019;49(9):1426-1448. 10.1017/S0033291719000151!!10.1017/S0033291719000151.
  114. Grubov VV, Nazarikov SI, Kurkin SA, Utyashev NP, Andrikov DA, Karpov OE, Hramov AE.Two-stage approach with combination of outlier detection method and deep learning enhances automatic epileptic seizure detection. IEEE Access. 2024;12:122168-122182. 10.1109/access.2024.345303910.1109/access.2024.3453039.
  115. Pitsik EN, Maximenko VA, Kurkin SA, Sergeev AP, Stoyanov D, Paunova R, Kandilarova S, Simeonova D, Hramov AE . The topology of fMRI-based networks defines the performance of a graph neural network for the classification of patients with major depressive disorder. Chaos, Solitons and Fractals. 2023;167:113041 DOI: 10.1016/j.chaos.2022.113041.
  116. Zhang S, Zhao H, Wang W, Wang Z, Luo X, Hramov A, Kurths J . Edge-centric effective connection network based on multi-modal MRI for the diagnosis of Alzheimer's disease. Neurocomputing. 2023;552:126512 DOI: 10.1016/j.neucom.2023.126512.
  117. Park KH, Sun S, Lim YH, Park HR, Lee JM, Park K, Jeon B, Park H-P, Kim HCh, Paek SH . Clinical outcome prediction from analysis of microelectrode recordings using deep learning in subthalamic deep brain stimulation for Parkinson`s disease. PLoS ONE. 2021;16(1):e0244133. . .93 DOI: 10.1371/journal.pone.0244133.
  118. Hubel DH, Wiesel TN . Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962;160(1):106-154 DOI: 10.1113/jphysiol.1962.sp006837.
  119. Behrouz A, Zhong P, Mirrokni V . Titans: Learning to Memorize at Test Time. arXiv:250100663 arXiv Preprint. 2024 DOI: 10.48550/arXiv.2501.00663.
  120. Stanton SJ, Sinnott-Armstrong W, Huettel SA . Neuromarketing: Ethical implications of its use and potential misuse. J Bus Ethics. 2017;144:799-811 DOI: 10.1007/s10551-016-3059-0.
  121. Luna-Nevarez C . Neuromarketing, ethics, and regulation: An exploratory analysis of consumer opinions and sentiment on blogs and social media. J Consum Policy. 2021;44(4):559-583 DOI: 10.1007/s10603-021-09496-y.
  122. Maron DF . Science career ads are disproportionately seen by men. Scientific American [Electronic resource] Available from: https://wwwscientificamericancom/article/science-career-ads-are-dispropo.... 2018.
  123. Goering S, Yuste R . On the necessity of ethical guidelines for novel neurotechnologies. Cell. 2016;167(4):882-885 DOI: 10.1016/j.cell.2016.10.029.
  124. Leefmann J, Levallois C, Hildt E . Neuroethics 1995-2012. A bibliometric analysis of the guiding the-mes of an emerging research field. Front Hum Neurosci. 2016;10:336. 10.3389/fnhum.2016.0033610.3389/fnhum.2016.00336.
  125. Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A . A survey on bias and fairness in machine learning. ACM Computing Surveys. 2021;54(6):1-35 DOI: 10.1145/3457607.
  126. Barocas S, Selbst AD . Big Data's Disparate Impact. California Law Review. 2016;104(3):671-732 DOI: 10.2139/ssrn.2477899.
  127. O'Neil C . Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. New York: Crown Publishing Group; 2016. 259 p.
  128. Caliskan A, Bryson JJ, Narayanan A . Semantics derived automatically from language corpora contain human-like biases. Science. 2017;356(6334):183-186 DOI: 10.1126/science.aal4230.
  129. Raghavan M, Barocas S, Kleinberg J, Levy K . Mitigating bias in algorithmic hiring: evaluating claims and practices. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. FAT* '20. New York, NY, USA: Association for Computing Machinery; 2020. P. 469–481 DOI: 10.1145/3351095.3372828.
  130. Bartlett R, Morse A, Stanton R, Wallace N . Consumer-lending discrimination in the FinTech era. Journal of Financial Economics. 2022;143:30-56 DOI: 10.1016/j.jfineco.2021.05.047.
  131. Angwin J, Larson J, Mattu S, Kirchner L . Machine bias: There's software used across the count-ry to predict future criminals. And it's biased against blacks. ProPublica [Electronic resource]. URL: https://wwwpropublicaorg/article/machine-bias-risk-assessments-in-crimin.... 2016.
  132. Van Deursen AJAM, Van Dijk JPM. The digital divide shifts to differences in usage. New Media & Society. 2014;16(3):507-526 DOI: 10.1177/1461444813487959.
  133. Yadav BR . The Ethics of Understanding: Exploring Moral Implications of Explainable AI. Inter-national Journal of Science and Research (IJSR). 2024;13(6):1-7. 10.21275/SR24529122811!!10.21275/SR24529122811.
  134. Kundu S . AI in medicine must be explainable. Nat Med. 2021;27(8):1328 DOI: 10.1038/s41591-021-01461-z.
  135. McDermid JA, Jia Y, Porter Z, Habli I . Artificial intelligence explainability: the technical and ethical dimensions. Philos Trans A Math Phys Eng Sci. 2021;379(2207):20200363. 10.1098/rsta.2020.036310.1098/rsta.2020.0363.
  136. Angelov PP, Soares EA, Jiang R, Arnold NI, Atkinson PM . Explainable artificial intelligence: an analytical review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2021;11(5):e1424. . %.97 DOI: 10.1002/widm.1424.
  137. Dwivedi R, Dave D, Naik H, Singhal S, Omer R, Patel P, Qian B, Wen Z, Shah T, Morgan G, Ranjan R . Explainable AI (XAI): Core ideas, techniques, and solutions. ACM Computing Surveys. 2023;55(9):835 DOI: 10.1145/3561048.
  138. Minh D, Wang HX, Li YF, Nguyen TN . Explainable artificial intelligence: a comprehensive review. Artif Intell Rev. 2022;55:3503-3568 DOI: 10.1007/s10462-021-10088-y.
  139. Ponce-Bobadilla AV, Schmitt V, Maier CS, Mensing S, Stodtmann S . Practical guide to SHAP analysis: Explaining supervised machine learning model predictions in drug development. Clin Transl Sci. 2024;17(11):e70056 DOI: 10.1111/cts.70056.
  140. Islam R, Andreev AV, Shusharina NN, Hramov AE . Explainable machine learning methods for classification of brain states during visual perception. Mathematics. 2022;10(15):2819 DOI: 10.3390/math10152819.
  141. Bhati D, Neha F, Amiruzzaman M . A survey on explainable artificial intelligence (xai) techniques for visualizing deep learning models in medical imaging. Journal of Imaging. 2024;10(10):239 DOI: 10.3390/jimaging10100239.
  142. Lai T . Interpretable medical imagery diagnosis with self-attentive transformers: a review of explainable AI for health care. BioMedInformatics. 2024;4(1):113-126. 10.3390/biomedinformatics401000810.3390/biomedinformatics4010008.
  143. Catherine S. B.,A. Unlocking the Black Box: Exploring the Future of Explainable AI in Real-World Applications. In: Multidisciplinary Research in Arts, Science & Commerce. Vol. 25. The Hill Publication; 2025. P. 37-38.
  144. Hassija V, Chamola V, Mahapatra A, Singal A, Goel D, Huang K, Scardapane S, Spinelli I, Mahmud M, Hussain A . Interpreting black-box models: a review on explainable artificial intelligence. Cogn Comput. 2024;16:45-74 DOI: 10.1007/s12559-023-10179-8.
  145. Karpov OE, Andrikov DA, Maksimenko VA, Hramov AE. Explainable artificial intelligence for medicine. Medical Doctor and Information Technologies. 2022;(2):4-11. 10.25881/18110193_2022_2_410.25881/18110193_2022_2_4.
  146. Cernevicien. e J, Kabasinskas A. Explainable artificial intelligence (XAI) in finance: a systematic literature review. Artif Intell Rev. 2024;57:216 DOI: 10.1007/s10462-024-10854-8.
  147. Craig T . Privacy and Big Data: The Players, Regulators, and Stakeholders. Sebastopol: O'Reilly Media, Inc.; 2011. 91 p.
  148. Curzon J, Kosa TA, Akalu R, El-Khatib K . Privacy and artificial intelligence. IEEE Transactions on Artificial Intelligence. 2021;2(2):96-108 DOI: 10.1109/TAI.2021.3088084.
  149. Chesterman S . Artificial intelligence and the problem of autonomy. Notre Dame Journal on Emerging Technologies. 2020;1:210-250.
  150. Novelli C, Taddeo M, Floridi L . Accountability in artificial intelligence: what it is and how it works. AI and Soc. 2024;39:1871-1882 DOI: 10.1007/s00146-023-01635-y.
  151. Oullier O, editor . Le cerveau et la loi: analyse de l''emergence du neurodroit. Paris: Centre d'analyse strat'egique; 2012. Available from: http://archives.strategie.gouv.fr/cas/system/files/cas-dqs_dt-neurodroit....
  152. Eagleman D M. Pourquoi les sciences du cerveau peuvent 'eclairer le droit. In: Oullier O, editor. Le cerveau et la loi: analyse de l'émergence du neurodroit. Paris: Centre d'analyse strat'egique; 2012. P. 33-52.
  153. Ernst E, Merola R, Samaan D . Economics of artificial intelligence: Implications for the future of work. IZA Journal of Labor Policy. 2019;9(1):4 DOI: 10.2478/izajolp-2019-0004.
  154. McGaughey E . Will robots automate your job away? Full employment, basic income and economic democracy. Industrial Law Journal. 2022;51(3):511-559 DOI: 10.1093/indlaw/dwab010.
  155. Russell S . Human Compatible: Artificial Intelligence and the Problem of Control. New York: Viking; 2019.
  156. Torres P . Superintelligence and the future of governance: On prioritizing the control problem at the end of history. In: Artificial Intelligence Safety and Security. Chapman and Hall/CRC; 2018. p. 357-374. . %.95 DOI: 10.1201/9781351251389-24.
  157. Totschnig W . The problem of superintelligence: Political, not technological. AI and Soc. 2019;34:907-920 DOI: 10.1007/s00146-017-0753-0.
  158. Yandex: Risk Assessment Approach,: electronic document . Available from: https://yandex.ru/.
  159. da Silva Castanheira J, Orozco Perez HD, Misic B, Baillet S. Brief segments of neurophysiological activity enable individual differentiation. Nat Commun. 2021;12:5713 DOI: 10.1038/s41467-021-25895-8.
  160. Shvab K . Technologies of the Fourth Industrial Revolution. М.: Eksmo; 2018. 317 p.
  161. Ienca M . On artificial intelligence and manipulation. Topoi. 2023;42(3):833-842. 10.1007/s11245-023-09940-310.1007/s11245-023-09940-3.
  162. Lemsieh H, Abarar I . Artificial intelligence: A technological tool to manipulate the psychology and behavior of consumers: Theoretical research. International Journal of Accounting, Finance, Auditing, Management and Economics. 2024;5(6):432-449 DOI: 10.5281/zenodo.12186136.
  163. Pisarchik AN, Musatov VYu, Runnova AE, Pchelintseva CV, Hramov AE . Method of person identification by eeg-response to ambiguous images. Patent No. 2653239 C1 Russian Federation, IPC G06K 9/66, A61B 5/0476, H04L 9/32: appl. 02.05.2017: publ. 07.05.2018. Assignee: Yuri Gagarin Saratov State Technical University (in Russian).
  164. Panch T ., Mattie H, Celi LA. The ``inconvenient truth'' about AI in healthcare. NPJ Digit Med. 2019;2:77 DOI: 10.1038/s41746-019-0155-4.
Received: 
08.07.2025
Accepted: 
01.08.2025
Available online: 
12.09.2025
Published: 
30.01.2026