ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


The article published as Early Access!

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
530.182
EDN: 

Coherent resonance in the microwave chaos generators

Autors: 
Komkov Pavel Sergeevich, Saratov State University
Pyhtunov Dmitry Sergeevich, Saratov State University
Romanenko Dmitrij Vladimirovich, Saratov State University
Skorokhodov Valentin Nikolaevich, Saratov State University
Grishin Sergej Valerevich, Saratov State University
Abstract: 

The purpose of this study is the observation of coherent resonance phenomenon in two microwave single-mode chaos generators with a delayed feedback under external noise influence. The first generator is a vacuum chaos generator based on a traveling wave tube and a multi-resonator drift klystron. The second generator is a solid-state chaos generator based on a transistor amplifier and a spin-wave transmission line supporting a magnetostatic surface wave (MSSW) propagation. The chaotic dynamics of the vacuum generator is caused by the presence of a falling section on the amplitude characteristic of the drift klystron. In the solid-state generator, the development of chaotic dynamics is associated with a nonlinear parametric three-wave decay of the MSSW into short-wave spin waves.

Methods. To observe the coherent resonance phenomenon in single chaotic oscillators (the microwave chaos generators), the time filtering method under the noise influence with a limited frequency band is used. The method is based on the effect of forced chaos synchronization (through its suppression) by external noise. The proposed method has the greatest efficiency in frequency separation of the power spectra of chaotic and noise signals (the power spectra of both signals should not overlap).

Results. In the studied microwave chaos generators of various physical natures, the existence of the “on-off” intermittency mode, in that the coherent resonance phenomenon is observed, has been experimentally established. It has been shown that the autocorrelation time of the envelope of a chaotic MW signal has a maximum value at a certain power level of the noise MW signal, and this maximum value depends on the noise MW signal bandwidth.

Conclusion. The developed method for the coherent resonance observation can also be applied to the multimode (broadband) ring chaos generators with the delayed feedback.
 

Acknowledgments: 
The authors thank Professor O.I. Moskalenko for consultations on the diagnostics of “on-off” intermittency. This work was supported by a grant from the Russian Science Foundation (project No. 23-22-00274, https://rscf.ru/project/23-22-00274/.
Reference: 
  1. Hu G, Ditzinger T, Ning CZ, Haken H. Stochastic resonance without external periodic force. Phys. Rev. Lett. 1993;71(6):807–810. DOI: 10.1103/PhysRevLett.71.807.
  2. Pikovsky A, Kurths J. Coherence resonance in a noise driven excitable system. Phys. Rev. Lett. 1997;78(5):775–778. DOI: 10.1103/PhysRevLett.78.775.
  3. Lindner B, Garcıa-Ojalvo J, Neiman AB, Schimansky-Geier L. Effects of noise in excitable systems. Phys.Rep. 2004;392:321–424. DOI: 10.1016/j.physrep.2003.10.015.
  4. Han SK, Yim TG, Postnov DE, Sosnovtseva OV. Interacting coherence resonance oscillators. Phys. Rev. Lett. 1999;83(9):1771–1774. DOI: 10.1103/PhysRevLett.83.1771.
  5. Giacomelli G, Giudici M, Balle S, Tredicce JR. Experimental evidence of coherence resonance in an optical system. Phys.Rev. Lett. 2000;84(15):3298–3301. DOI: 10.1103/PhysRevLett.84.3298.
  6. Dmitriev BS, Zharkov YD, Sadovnikov SA, Skorokhodov VN, Stepanov AO. Coherent resonance in klystron oscillator at self-excitation threshold. Tech. Phys. Lett. 2011;37(11):1082–1085. DOI: 10.1134/S1063785011110216.
  7. Palenzuela C, Toral R, Mirasso CR, Calvo O, Gunton JD. Coherence resonance in chaotic systems. Europhys. Lett. 2001;56(3):347–353. DOI: 10.1209/epl/i2001-00526-5.
  8. Liu Z, Lai Y-C. Coherence resonance in coupled chaotic oscillators. Phys. Rev. Lett. 2001;86(21): 4737–4740. DOI: 10.1103/PhysRevLett.86.4737.
  9. Calvo O, Mirasso CR, Toral R. Coherence resonance in chaotic electronic circuits. Electron. Lett. 2001;37(17);1062–1063. DOI: 10.1049/el:20010735.
  10. Calvo O, Gomes I, Mirasso CR, Toral R. Experimental observation of coherence and stochastic resonances in an electronic Chua circuit. AIP Conf. Proc. 2002;622(1):427–432. DOI: 10.1063/1.1487561.
  11. Landa PS. Auto-Oscillations in the Systems with a Finite Number of Freedom Degrees. M.: Nauka; 1980. 359 p. (in Russian).
  12. Neymark YuI., Landa PS. Stochastic and Chaotic Oscillations. 2nd Ed., suppl. M.: Book House “LIBROKOM”; 2009. 424 p. (in Russian).
  13. Marchewka C, Larsen P, Bhattacharjee S, Booske J, Sengele S, Ryskin N, Titov V. Generation of chaotic radiation in a driven traveling wave tube amplifier with time-delayed feedback. Phys. Plasmas. 2006;13(1):013104. DOI: 10.1063/1.2161170.
  14. Dmitriev BS, Zharkov YuD, Skorokhodov VN, Genshaft AM. Synchronization of chaotic oscillation by the way of chaos suppression in klystron active oscillator by external harmonic signal. Izvestiya VUZ. Applied Nonlinear Dynamics. 2007;15(3);52–57 (in Russian). DOI: 10.18500/0869-6632-2007-15-3-52-57.
  15. Grishin SV, Grishin VS, Hramov AE, Sharaevskii YuP. Wideband chaotic oscillation in a self-oscillatory system with a nonlinear transmission line on magnetostatic waves. Tech. Phys. 2008;53(5):620—628. DOI: 10.1134/S1063784208050150.
  16. Kislov VYa, Myasin EA, Bogdanov EV. Method of generation of electromagnetic noise oscillations. A.s. No. 1125735 (USSR). 1984;43 (in Russian).
  17. Anisimova YuV, Vorontsov GM, Zalogin NN, Kislov VYa, Myasin EA. Noisetron. Radiotekhnika. 2000;2:19–25 (in Russian).
  18. Bliokh JP, Lubarsky MG, Podobinsky VO, Feinberg JB. Investigation of stochasticization mechanisms of sectionalized microwave beam generators. Physics of Plasma. 1994;20(7,8): 718–728 (in Russian).
  19. Dmitriev BS, Zharkov YD, Klokotov DV, Ryskin NM. Experimental study of complex dynamics in a delayed-feedback multiple-cavity klystron self-oscillator. Tech. Phys. 2003;48(7):901–905. DOI: 10.1134/1.1593198.
  20. Wu M. Nonlinear spin waves in magnetic film feedback rings. Solid State Phys. 2010;62:163–224. DOI: 10.1016/B978-0-12-374293-3.00003-1.
  21. Dmitriev BS, Zharkov YuD, Skorokhodov VN. Method of chaotic radio-frequency pulses of major power generation for direct-random communication systems. Patent for invention No. 2349027 Russian Federation, IPC H03K 3/84: appl. 25.07.2007: publ. 10.03.2009. 7 p. (in Russian).
  22. Grishin SV, Dmitriev BS, Zharkov YuD, Manyshev RA, Skorokhodov VN. Chaotic microwave pulse generation in wideband spin-wave and vacuum oscillators of chaos under external periodical influence. Izvestiya VUZ. Applied Nonlinear Dynamics. 2012;20(5):137–155. DOI: 10.18500/0869-6632-2012-20-5-137-155.
  23. Grishin SV, Moskalenko OI, Pavlov AN, Romanenko DV, Sadovnikov AV, Sharaevskii YuP, Sysoev IV, Medvedeva TM, Seleznev EP, Nikitov SA. Space-quasiperiodic and time-chaotic parametric patterns in a magnonic quasicrystal active ring resonator. Phys. Rev. Appl. 2021;16(5):054029. DOI: 10.1103/PhysRevApplied.16.054029.
  24. Grishin SV, Nikitov SA, Romanenko DV, Khudolozhkin VO, Sharaevskii YuP. Generation of single chaotic microwave pulses in a self-oscillating ring system with ferromagnetic film under the action of external noise. Tech. Phys. Lett. 2013;39(4):321–324. DOI: 10.1134/S1063785013040056.
  25. Grishin SV, Skorokhodov VN. Generation of dark envelope pulses in a modified noisetron scheme. Tech. Phys. Lett. 2023;49(9):75–78. DOI: 10.61011/TPL.2023.09.56716.19516.
  26. Demidov VE, Kovshikov NG. Stochastic generation accompanying parametric excitation of spin waves in yttrium iron garnet films. Tech. Phys. Lett. 1998;24(4):274–276. DOI: 10.1134/1.1262081.
  27. Demidov VE, Kovshikov NG. Some special features of the transition to chaos in the selfmodulation of surface spin waves. JETP Lett. 1997;66(4):261–265. DOI: 10.1134/1.567464.
  28. Dmitriev AS, Panas AI. Dynamic Chaos: New Information Carriers for Communication Systems. M.: Fizmatlit; 2002. 252 p. (in Russian).
  29. Zalogin NN, Kislov VV. Broadband Chaotic Signals in Radio Engineering and Information systems. M.: Radio Engineering; 2006. 205 p. (in Russian).
  30. Legenstein R, Maass W. Edge of chaos and prediction of computational performance for neural circuit models. Neural Netw. 2007;20(3):323–334. DOI: 10.1016/j.neunet.2007.04.017.
Received: 
15.10.2024
Accepted: 
29.11.2024
Available online: 
06.12.2024