ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Egorov N. М., Ponomarenko V. I., Melnikova S. N., Sysoev I. V., Sysoeva M. V. Common mechanisms of attractorless oscillatory regimes in radioengineering models of brain thalamocortical network. Izvestiya VUZ. Applied Nonlinear Dynamics, 2021, vol. 29, iss. 6, pp. 927-942. DOI: 10.18500/0869-6632-2021-29-6-927-942

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 115)
Article type: 
621.373.9, 530.182, 004.942

Common mechanisms of attractorless oscillatory regimes in radioengineering models of brain thalamocortical network

Egorov Nikita Михайлович, Yuri Gagarin State Technical University of Saratov
Ponomarenko Vladimir Ivanovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Melnikova Sofia Nikolaevna, Yuri Gagarin State Technical University of Saratov
Sysoev Ilya V., Saratov State University
Sysoeva Marina Vyacheslavovna, Yuri Gagarin State Technical University of Saratov

This work aims to show that long transient processes in mesascale models of thalamocortical brain network can appear in very general case, in particular for different number of elements in the ensemble (different level of detalization) and different initial phase of external driving, with these regimes surviving at small variations of number and structure of couplings. Methods. Thalamocortical brain networks are modelled using electronic circuit realized using computer SPICE eluating software. FitzHugh – Nagumo analog generator is used as a single circuit element. Results. Long quasiregular and nonregular oscillation processes with stationary amplitude were shown to occur in ensembles of 14, 28 and 56 model FitzHug – Nagumo generators. The dependency of transient process length on the external driving initial phase and particular coupling matrix structure was studied. Conclusion. The proposed electronic models of thalamocortical system were proved to reproduce the pathological regimes of brain activity in similar way despite the number of elements in the circuit, connectivity matrix and initial driving phase.

This study was supported by Russian Science Foundation, grant No. 21-72-00015,
  1. Coenen AML, van Luijtelaar ELJM. Genetic animal models for absence epilepsy: A review of the WAG/Rij strain of rats. Behavioral Genetics. 2003;33(6):635–655. DOI: 10.1023/A:1026179013847.
  2. Volnova AB, Lenkov DN. Absence epilepsy: Mechanisms of hypersynchronization of neuronal networks. Medical Academic Journal. 2012;12(1):7–19 (in Russian).
  3. Luttjohann A, van Luijtelaar G. The dynamics of cortico-thalamo-cortical interactions at the transition from pre-ictal to ictal LFPs in absence epilepsy. Neurobiology of Disease. 2012;47(1): 49–60. DOI: 10.1016/j.nbd.2012.03.023.
  4. Sysoeva MV, Luttjohann A, van Luijtelaar G, Sysoev IV. Dynamics of directional coupling underlying spike-wave discharges. Neuroscience. 2016;314:75–89. DOI: 10.1016/j.neuroscience.2015.11.044.
  5. Sysoeva MV, Vinogradova LV, Kuznetsova GD, Sysoev IV, van Rijn C. Changes in corticocortical and corticohippocampal network during absence seizures in WAG/Rij rats revealed with time varying Granger causality. Epilepsy and Behavior. 2016;64:44–50. DOI: 10.1016/j.yebeh.2016.08.009.
  6. Sysoeva MV, Sitnikova EY, Sysoev IV. Thalamo-cortical mechanisms of initiation, maintenance and termination of spike-wave discharges at WAG/Rij rats. I. P. Pavlov Journal of Higher Nervous Activity. 2016;66(1):103–112 (in Russian). DOI: 10.7868/S0044467716010123.
  7. Suffczynski P, Kalitzin S, Lopes Da Silva FH. Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience. 2004;126(2):467–484. DOI: 10.1016/j.neuroscience.2004.03.014.
  8. Taylor PN, Wang Y, Goodfellow M, Dauwels J, Moeller F, Stephani U, Baier G. A computational study of stimulus driven epileptic seizure abatement. PLoS ONE. 2014;9(12):e114316. DOI: 10.1371/journal.pone.0114316.
  9. Medvedeva TM, Sysoeva MV, van Luijtelaar G, Sysoev IV. Modeling spike-wave discharges by a complex network of neuronal oscillators. Neural Networks. 2018;98:271–282. DOI: 10.1016/j.neunet.2017.12.002.
  10. Medvedeva TM, Sysoeva MV, Luttjohann A, van Luijtelaar G, Sysoev IV. Dynamical mesoscale model of absence seizures in genetic models. PLoS ONE. 2020;15(9):e0239125. DOI: 10.1371/journal.pone.0239125.
  11. Thomas A. Memristor-based neural networks. Journal of Physics D: Applied Physics. 2013;46(9):093001. DOI: 10.1088/0022-3727/46/9/093001.
  12. Babacan Y, Ka¸car F., Gurkan K. A spiking and bursting neuron circuit based on memristor. Neurocomputing. 2016;203:86–91. DOI: 10.1016/j.neucom.2016.03.060.
  13. Kulminskiy DD, Ponomarenko VI, Prokhorov MD, Hramov AE. Synchronization in ensembles of delay-coupled nonidentical neuronlike oscillators. Nonlinear Dynamics. 2019;98(1):735–748. DOI: 10.1007/s11071-019-05224-x.
  14. Egorov NM, Ponomarenko VI, Sysoev IV, Sysoeva MV. Simulation of epileptiform activity using network of neuron-like radio technical oscillators. Technical Physics. 2021;66(3):505–514. DOI: 10.1134/S1063784221030063.
  15. Abbasova KR, Chepurnov SA, Chepurnova NE, van Luijtelaar G. The role of perioral afferentation in the occurrence of spike-wave discharges in the WAG/Rij model of absence epilepsy. Brain Research. 2010;1366:257–262. DOI: 10.1016/j.brainres.2010.10.007.
  16. Kapustnikov AA, Sysoeva MV, Sysoev IV. The modeling of spike-wave discharges in brain with small oscillatory neural networks. Mathematical Biology and Bioinformatics. 2020;15(2):138–147 (in Russian). DOI: 10.17537/2020.15.138.
  17. Rabinovich MI, Trubetskov DI. Oscillations and Waves in Linear and Nonlinear Systems. Dordrecht: Springer; 1989. 578 p. DOI: 10.1007/978-94-009-1033-1.
  18. Russo E, Citraro R, Constanti A, Leo A, Luttjohann A, van Luijtelaar G, De Sarro G. Upholding WAG/Rij rats as a model of absence epileptogenesis: Hidden mechanisms and a new theory on seizure development. Neuroscience and Biobehavioral Reviews. 2016;71: 388–408. DOI: 10.1016/j.neubiorev.2016.09.017.
  19. Marescaux C, Vergnes M, Depaulis A. Genetic absence epilepsy in rats from Strasbourg – a review. Journal of Neural Transmission Supplementum. 1992;35:37–69. DOI: 10.1007/978-3-7091-9206-1_4.
  20. Kalimullina LB, Musina AM, Kuznetsova GN. Experimental approaches to studies of the role of the genotype at the TAG 1A locus of the dopamine D2 receptor in epileptogenesis. Neuroscience and Behavioral Physiology. 2013;43(8):935–940. DOI: 10.1007/s11055-013-9831-z.
  21. Grishchenko AA, van Rijn KM, Sysoev IV. Comparative analysis of methods for estimation of undirected coupling from time series of intracranial EEGs of cortex of rats-genetic models of absence epilepsy. Mathematical Biology and Bioinformatics. 2017;12(2):317–326 (in Russian). DOI: 10.17537/2017.12.317.
  22. Dahlem MA, Hiller G, Panchuk A, Scholl E. Dynamics of delay-coupled excitable neural systems. International Journal of Bifurcation and Chaos. 2009;19(2):745–753. DOI: 10.1142/S0218127409023111.
  23. Weinstein LA. E-wave in slow-wave system. Radio Engineering and Electronics. 1957;3(6):688 (in Russian).
  24. Shevchik VN, Trubetskov DI. Analytical Methods of Calculation in Microwave Electronics. Moscow: Sovetskoe Radio; 1970. 584 p. (in Russian).
  25. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 6th Edition. San Diego: Academic Press; 2007. 456 p.
  26. Gabova AV, Kuznetsova GD, Gnezditskii VV, Bazyan AS, Obukhov YV. Method of wavelet transform in neurology: analysis of time and frequency characteristics of typical and atypical discharges of nonconvulsive epilepsy. Annals of Clinical and Experimental Neurology. 2009;3(4):39–44 (in Russian).
  27. Akman O, Demiralp T, Ates N, Onat FY. Electroencephalographic differences between WAG/Rij and GAERS rat models of absence epilepsy. Epilepsy Research. 2010;89(2–3):185–193. DOI: 10.1016/j.eplepsyres.2009.12.005.
  28. Karlov VA. Epileptic status of non-convulsive seizures. S. S. Korsakov Journal of Neurology and Psychiatry. 2008;108(5):92–98 (in Russian).
  29. Trinka E, Hofler J, Zerbs A. Causes of status epilepticus. Epilepsia. 2012;53(4):127–138. DOI: 10.1111/j.1528-1167.2012.03622.x.
  30. Kuznetsov AP, Kuznetsov SP, Ryskin NM. Nonlinear Oscillations. Moscow: FIZMATLIT; 2005. 292 p. (in Russian).
  31. Meeren HKM, Pijn JPM, van Luijtelaar ELJM, Coenen AML, Lopes da Silva FH. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. Journal of Neuroscience. 2002;22(4):1480–1495. DOI: 10.1523/JNEUROSCI.22-04-01480.2002.