ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Fleishman A. N., Korablina T. V., Petrovsky S. A., Martynov I. D. Complex structure and nonlinear behavior of very low frequency of heart rate variability: model of analysis, and practical applications. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 1, pp. 55-70. DOI: 10.18500/0869-6632-2014-22-1-55-70

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 369)
Language: 
Russian
Article type: 
Article
UDC: 
612.172.4

Complex structure and nonlinear behavior of very low frequency of heart rate variability: model of analysis, and practical applications

Autors: 
Fleishman Arnold Naumovich, Institute of Complex Problems of Hygiene and Occupational Diseases of the Siberian Branch of the Russian Academy of Medical Sciences (NII KPGPZ SB RAMS)
Korablina Tatjana Valentinovna, Siberian State Industrial University SibSIU
Petrovsky Stanislav Alfredovich, Institute of Complex Problems of Hygiene and Occupational Diseases of the Siberian Branch of the Russian Academy of Medical Sciences (NII KPGPZ SB RAMS)
Martynov Ilja Dmitrievich, Institute of Complex Problems of Hygiene and Occupational Diseases of the Siberian Branch of the Russian Academy of Medical Sciences (NII KPGPZ SB RAMS)
Abstract: 

Researched the structure of Very Low Frequency (VLF) spectrum of heart rate variability (HRV)  and its nonlinear behavior in a relationship with the energy of oscillations, baroreflex and parasympathetic activity at functional tests of low intensity in 100 subjects (seven-test, deep breathing), including active orthostatic test of 32 subjects with orthostatic tachycardia in comparison to the control group of 20 subjects. There were three stages of research. The first  stage: created the method of spectral analysis of separate components of VLF. On the basis of  comparative data of Fast Furrier Transform with Welch filters, autoregression, continuous wavelet analysis and Hilbert–Huang transform, for the first time it was shown that VLF has  separate 200, 100 and 50 sec oscillations (VLF200, VLF100, VLF50). The second stage: for evaluation of physiological properties of the separate oscillations, was conducted the analysis of  VLF structure in three groups of patients: (a) with a predominance of parasympathetic activity (HF) in the VLF spectrum, (b) with a dominance of 10 sec oscillations (LF), (c) with a severe depression of energy in all components of the spectrum. It was established that the individual components of VLF (VLF100 and VLF50) have a certain stability and partiall independence  from the changes of peripheral autonomic indices (LF/HF) at loads of low intensity. The third stage: analyzed features of VLF structure (VLF100 and VLF50) alone and in a conjunction with LF and HF, as well as heart rate and blood pressure in humans with orthostatic tachycardia with a predominance of parasympathetic activity at functional tests of low intensity (seven-test deep breathing) and at an active orthostatic test. Based on these studies it was concluded that the individual components in VLF structure (VLF100, VLF50) can demonstrate reciprocal relations at a load among themselves and in the LF/HF ratio, and play an adaptive role in the mechanisms of autonomic provision. Previously found regularities that are characteristic for the subjects with orthostatic tachycardia in the form of high-level LF turned out to be insufficient for the prognosis. Revealed the importance of VLF and its components, 100 and 50 sec oscillations at an orthostatic test in the prognosis of orthostatic tachycardia development. In 35% of patients with dysautonomia at high level of VLF100 power, tachycardia did not develop. In this case, VLF and its component parts did an important adaptive function. The analysis of a complex VLF structure contributes to the differential treatment and detection of central mechanisms of adaptation. Adaptive VLF functions were mainly registered at orthostatic load. In the proposed model of the descending neurosomatic control of autonomic regulation of HRV a very important role plays both neurogenic ways of regulation, and neuro-hormonal-metabolic ways, manifested in the complex VLF structure. Regarded the choice of ways and optimal models of regulation.

Reference: 
  1. Ludwig C. Beitrage zur Kenntnis des Einflusses der Respirations bewegungen aufden Blutlauf im Aortensysteme. Arch. Anat. Physiol. Wiss. Med (Mьller Arch); 1847. 242 p.
  2. Traube L. Uerperiodische Thatigkeits–Ausserungen des vasomotorischen und Hem- mungs–Nervenzentrums. Centrablatt Med. Wiss. 1865;56:880.
  3. Hering E. Uber den Einfluss der Athmung auf den Kreislauf.I. Mitteilung: Uer Athembewegun – gen des Gafassystems. Sber Akd Wiss Wien Math-naturwiss Klasse 2. Abteilung 60; 1869. 829 p.
  4. Mayer S. Studein zur Physiologie des Herzensund der Blutgefдsse: V: Uber spontane Blutdruckschwankungen. Sber Akd Wiss. Wien. 1876;74:281.
  5. Heart Rate Variability. Standards of Measurement, Physiological Interpretation, and Clinical Use. Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Circulation. 1996;95(5)1043—1065.
  6. Yamamoto Y, Kiyono K, Struzik ZR. Measurement, analysis, and interpretation of long-term heart rate variability. SICE 2004 Annual Conference. 2004;3:2598-2605. DOI: 10.11499/sicep.2004.0.43.1.
  7. Ivanov PC, Amaral LA, Goldberger AL, Havlin Sh, Rosenblum MG, Stanley HE, Struzik ZR. From 1/f noise to multifractal cascades in heartbeat dynamics. Chaos. 2001;11(3).
  8. Ivanov PC, Amaral LA, Goldberger AL, Havlin Sh, Rosenblum MG, Struzik ZR, Stanley HE. Multifractality in human heartbeat dynamics. Nature. 1999;399(6735):461—465. DOI: 10.1038/20924.
  9. Sayers BM. Analysis of heart rate variability. Ergonom. 1973;16(1):17—32. DOI: 10.1080/00140137308924479.
  10. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213(4504):220—222. DOI: 10.1126/science.6166045.
  11. Akselrod S, Gordon D, Madwed JB. et al. Hemodynamic regulation: investigation  by spectral analysis. Am. J. Physiol. 1985;249:867—875. DOI: 10.1152/ajpheart.1985.249.4.H867.
  12. Taylor JA, Carr DL, Myers CW, Eckberg DL. Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation. 1998;98(6):547—555. DOI: 10.1161/01.cir.98.6.547.
  13. Fleishman AN. Slow fluctuations in hemodynamics: theory, practical application in clinical medicine and prevention. Novosibirsk: Nauka; 1999. 264 p.
  14. Kleiger RE, Miller JP, Bigger JT, Moss AJ, and the Multicenter post-infarction research group. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 1987;59(4):256—262. DOI: 10.1016/0002-9149(87)90795-8.
  15. Kleschenogov SA, Fleishman AN. The study of the path-ophysiological features of pregnancy development in healthy women with different spectral power of HRV, indicators of systemic hemodynamics and body weight. Engineering in Medicine: oscillatory processes of hemodynamics. Surge and fluctuation of the cardiovascular system: Proceedings of the Symposium. Chelyabinsk, May 30 - June 1; 2000:120—128.
  16. Zuanetti G, Neilson JM, Latini R, Santoro E, Maggioni AP, Ewing DJ. Prognostic significance of heart rate variability in post-myocardial infarction patients in the fibrinolytic era. Circulation. 1996;94(3):432—436. DOI: 10.1161/01.cir.94.3.432.
  17. Fleishman AN. Energy deficient state, neuroautonomic regulation of physiological functions and HRV. Theoretical and applied aspects of nonlinear dynamics in physiology and medicine. Materials of the IV all-Russian Symposium with international participation and II School-seminar "Slow oscillatory processes in the human body. Novokuzneck, 24-27 may; 2005:10-19.
  18. Radaelli A, Castiglioni P, Centola M, Cesana F, Balestri G, Ferrari AU, Di Rienzo M. Adrenergic origin of very low frequency blood pressure oscillations in the unanesthetized rat. Am. J. Physiol. 2006;290(1):357—364. DOI: 10.1152/ajpheart.00773.2005.
  19. Fleishman AN, Shumeiko NI, Karpenko SV, Sin AF, Dinges VR, Golik AS, Anpiligov KA. Neuroautonomic aspects of adaptation rescuers to insulating PPE. Materials of the V all-Russian Symposium with international participation and III School-seminar "Slow oscillatory processes in the human body. Theoretical and applied aspects of nonlinear dynamics in physiology and medicine. Novokuznetsk, May 15-18; 2007:164—174.
  20. Grigoriyev YV, Slepushkin VV, Mulov AD. Metabolic aspects of cardiac rhythm of variability in patients in critical condition. Slow oscillatory processes in the human body. Theory. Practical application in clinical medicine and prevention. Novokuzneck; 1999:126—130.
  21. Su Sh, Lampert R, Lee F, Douglas BJ, Snieder H, Jones L, Murrah NV, Goldberg J, Vaccarino V. Common genes contribute to depressive symptoms and heart rate variability. Twin Res. Hum. Genet. 2010;13(1):1—9.
  22. Thayer JF, Ahs F, Fredrikson M, Sollers JJ, Wager TD. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience and Biobehavioral Reviews. 2012;36(2):747—756. DOI: 10.1016/j.neubiorev.2011.11.009.
  23. Thayer JF, Lane RD. Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience and Biobehavioral Reviews 2009;33(2):81—88. DOI: 10.1016/j.neubiorev.2008.08.004.
  24. Kuusela TA, Kaila TJ, Kahunen M. Fine structure of the low-frequency spectra of heart rate and blood pressure. BMC Physiology. 2003;3:11. DOI: 10.1186/1472-6793-3-11.
  25. Togo F, Kiyono K, Struzik ZR, Yamamoto Y. Unique very low-frequency heart rate variability during deep sleep in humans. IEEE Trans Biomed. 2006;53(1):28—34. DOI: 10.1109/TBME.2005.859783.
  26. Fleishman AN. Heart rate variability and slow fluctuations in hemodynamics: nonlinear phenomena in clinical practice. Novosibirsk: SB RAS Publ.; 2009. 194 p.
  27. Gerus AY, Fleishman AN. Age-dependent vegetative changes at relatives of sick with type 2 diabetes. Vestnik NSU. Series: Biology and clinical medicine. 2008;6(3):97—101.
  28. Postnov DE, Scherbakov PA, Fleishman AN. Using of adaptive wavelet filter for the analysis of change patterns during exercise of low intensity. Materials of the IV all-Russian Symposium with international participation and II School-seminar "Slow oscillatory processes in the human body. Theoretical and applied aspects of nonlinear dynamics in physiology and medicine. Novokuzneck; 2005:103—109.
  29. Raj SR, Levine BD. Postural Tachycardia Syndrome (POTS) Diagnosis and Treatment: Basics and New Developments. Cardiac Rhythm Management; 2013.
  30. Morton GJ, Schwartz MW. Leptin and the CNS Control of Glucose Metabolism. Physiol. Rev. 2011;91(2):389—411. DOI:10.1152/physrev.00007.2010.
Received: 
26.12.2013
Accepted: 
26.12.2013
Published: 
30.04.2014
Short text (in English):
(downloads: 96)