ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Belotsercovsky S. M., Gynevski A. S. Computer conception of vortex turbulence. Izvestiya VUZ. Applied Nonlinear Dynamics, 1995, vol. 3, iss. 2, pp. 72-93.

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
532.525.6+626.734+533.06

Computer conception of vortex turbulence

Autors: 
Belotsercovsky Sergei Mikhailovich, Federal State Unitary Enterprise "Central Aerohydrodynamic Institute named after prof. NE Zhukovsky"
Gynevski Aron Semenovich, Federal State Unitary Enterprise "Central Aerohydrodynamic Institute named after prof. NE Zhukovsky"
Abstract: 

A similation of turbulent jets and separated flows of incompressible liquid based on the scheme of ideal medium and on the method of discrete vortices is considered. The mathematical construction of shear flow model with high Reynolds numbers is based on treating a free turbulence as a hierarchy of vortices of various scales. Generally a turbulent motion is considered as a three-dimensional and essentially nonsteady one. A turbulence is generated by а loss of stability and by а breakup of regular vortex formations (sheets) with its further transformation into vortex ensembles. The latters, having common motion with the medium, alter, catch each other, and form new macrostructures as well as small vortices. It is significant that vortex motion contain аn inherent mechanism of a loss of stability and transformation from order to chaos. Solutions received with the method of discrete vortices allow to find fields of average velocity and pressure, normal and shear Reynolds stress, pressure pulsations; spatial, time and spatial-time correlations of velosity and pressure pulsations as well as appropriate turbulence scale without application of empirical constants.

Key words: 
Acknowledgments: 
The work was carried out with financial support from the International Science Foundation and the Russian Government (Grant M2R 300).
Reference: 
  1. Belotserkovskii SM, Nisht МI. Detachable and Continuous Flow around Thin Wings with a Perfect Liquid. М.: Nauka; 1978. 351 p.
  2. Belotserkovskii SM, Lifanov IК. Numerical Methods in Singular Integral Equations and Their Application in Aerodynamics, Elasticity Theory, Electrodynamics. М.: Nauka; 1985. 253 p.
  3. Belotserkovskii SM, Kotovskii VN, Nisht МI, Fedorov RМ. Mathematical Modelling of Plane-Parallel Detachable Flow of Bodies. M.: Nauka; 1988. 231 p.
  4. Babkin VI‚ Belotserkovskii SM, Gulyaev VV, Dvorak АV. Jets and Load-Bearing Surfaces. Computer Modelling. M.: Nauka; 1989. 207 p.
  5. Belotserkovskii OM, Belotserkovskii SM, Davydov YuM, Nisht MI. Modelling of Tear-Off Currents on the Computer. М.: Kibernetika; 1984. 122 p.
  6. Belotserkovsky SM. The Theory of Thin Wings in Subsonic Flow. N.Y.: Plenum Press; 1967. 230 p. DOI: 10.1007/978-1-4899-6299-7.
  7. Belotserkovsky SM, Lifanov LK. Method of Discrete Vortices. Boca Raton: CRC Press; 1993. 464 p.
  8. Belotserkovsky SM‚ Kotovskii VN, Nisht М, Fedorov RM. Two- Dimensional Separated Flows. Boca Raton: CRC Press; 1993. 320 p.
  9. Belotserkovsky SM. Digital simulation of separated and jet flows using discrete vortex method. In: TUTAM Symposium. Novosibirsk; 1990. P. 97.
  10. Belotserkovsky SM. Study of the unsteady aerodynamics of lifting surface using the computer. Ann. Rev. Fluid Mech. 1977;9:469-494.
  11. Belotserkovsky SM, Ginevskii AS. Modelling of Turbulent Jets and Traces Based on the Discrete Vortice Method. M.: Nauka; 1995. 367 p.
  12. Belotserkovsky SM, Skobelev BYu. Discrete vortice method and turbulence. Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the RAS. Preprint № 10. 1993. 39 p.
  13. Vlasov EV, Ginevskii AS. Coherent structures in turbulent jets and traces. The Results of Science and Technology. Fluid and Gas Mechanics. 1986;20:3-84.
  14. Rabinovich MI, Sushchik ММ. Coherent structures in turbulent currents. In: Nonlinear Waves. Self-Organisation. М.: Nauka; 1983. P. 56.v
  15. Fiedler HE. Coherent structures. In: ADV Turbul. Proc., 1st Eur. Turbul. Conf. 1-4 July 1986, Lyon, France. Berlin; 1987. P. 320
  16. Hussain AKMF. Coherent structures - reality and myth. Phys. Fluids. 1983;26(10):2816-2850. DOI: 10.1063/1.864048.
  17. Bunimovich LА. Coherent structures and nonlinear dynamics. In: Coherent Structures and Self-Organisation of Oceanic Movements. М.: Nauka; 1992. P. 62-76.
  18. Abramovich GN, Girshovich TA, Krashennikov SYu, Sekundov AN, Smirinova IP. Theory of Turbulent Jets. M.: Nauka; 1984. 716 p.
  19. Ginevskii АS. Theory of Turbulent Jets and Traces. М.: Mashinostroenie; 1969. 400 p.
  20. Shetz J. Injection and mixing in turbulent flow. In: Astronautics and Aeronautics. Vol. 8. АIАА, N.Y.; 1990.
  21. Belotserkovskii SM, Dvorak AV, Zhelannikov АI, Kotovskii VN. Computer modelling of turbulent jets and traces. In: Problems of Turbulent Currents. М: Nauka; 1987. P. 129.
  22. Belotserkovskii SM, Dvorak AV, Khlapov NV. Computer modelling of flat turbulent jets. Sov. Phys. Doklady. 1985;282(3):542-545. (in Russian).
  23. Belotserkovskii SM, Nisht МI. On the study the turbulent trace of the plate. Sov. Phys. Doklady. 1974;216(6):1240-1243. (in Russian).
  24. Airapetov АB. On the correctness of the “average” of the Cauchy problem for the system of ordinary and stochastic equations. Proc. of Central Institute of Aerodynamics. No. 1784. M.: 1976. 28 p.
  25. Airapetov АB. On the statistical properties of a system of discrete vortices modelling a turbulent jet current. In: Turbulent Currents. М.: Nauka; 1977. P. 188.
  26. Smirnykh EА. Modelling of periodic excitation of a flat turbulent jet by the method of discrete vortices. In: Thermophysical and Physical-Chemical Processes in Chemical Plants. Minsk; 1986. P. 92.
  27. Smirnykh ЕА. Numerical modelling of mixing of gases and solid inertial particles in a flat turbulent jet. In: Mechanics of Inhomogeneous and Turbulent Flows. М.: Nauka; 1989. P. 220.
  28. Smirnykh ЕА. Numerical study of the structure of the breakaway flow behind the interceptor by the method of discrete vortices. Proc. of Central Institute of Aerodynamics. No. 2420. M.; 1989. 9 p.
  29. Veretentsev AN, Rudyak VYa. On the processes of formation and evolution of vortex structures in shear layers. Fluid Dynamics. 1987;1:31-37.
  30. Veretentsev AN, Rudyak VYa, Yanenko NN. The construction of discrete vortex models of ideal incompressible fluid flows. USSR Comput. Math. Math. Phys. 1986;26(1):65-71. DOI: 10.1016/0041-5553(86)90182-5.
  31. Leonard А. Vortex method for flow simulation. J. Comput. Phys. 1990;37(3):289-335. DOI: 10.1016/0021-9991(80)90040-6.
  32. Leonard А. Computing three-dimensional incompressible flows with vortex elements. Ann. Rev. Fluid Mech. 1985;17:523-559. DOI: 10.1146/ANNUREV.FL.17.010185.002515.
  33. Chorin AJ. Numerical study of slightly viscous flow. J. Fluid Mech. 1973;57(4);785-796. DOI: 10.1017/S0022112073002016.
  34. Chein R, Chung JN. Discrete-vortex simulation of flow over inclined and normal plates. Comp. Fluids. 1988;16(4):405-427. DOI: 10.1016/0045-7930(88)90025-4.
  35. Edwards AVJ, Morfey CL. A computer simulation of turbulent jet flow. Comp. Fluids. 1981;9(2):205-221. DOI: 10.1016/0045-7930(81)90025-6.
  36. Acton Е. A modelling of large eddies in an axisymmetric jet. J. Fluid Mech. 1980;98(1):1-31. DOI: 10.1017/S0022112080000018.
  37. Shimizu S. Discrete-vortex simulation of two-dimensional turbulent jet. Bulletin of JSME. 1986;29(254):2440-2446. DOI: 10.1299/jsme1958.29.2440.
  38. Novikov EA, Sedov YuB. Stochastic properties of a four-vortex system. J. Exp. Theor. Phys. 1978;48(3):440-444.
  39. Vlasov  ЕV, Ginevskii AS, Karavosov RK, Frankfurt MO. Wall-mounted pressure pulsations in the detachment zone behind two-dimensional obstacles. Proc. of Central Institute of Aerodynamics. No. 2137. M.; 1982. 80 p.
  40. Vlasov  ЕV. Study of turbulence in connection with the determination of the acoustic characteristics of the jet. Engineering and Physics Journal. 1965;8(5):568.
  41. Quinn WR. Turbulent free flows issuing from sharp-edged rectangular slots: The influence of slot aspect ratio. Exp. Thermal Fluid Sci. 1992;5(2):203-215. DOI: 10.1016/0894-1777(92)90007-R.
  42. Ukhanova LN. Some patterns of development of a three-dimensional turbulent trace. Proc. of Central Institute of Aerodynamics. No. 1567. M.; 1974. 16 p.
  43. Kiya M, Arie M. Discrete-vortex simulation of unsteady separated flow behind а nearly normal plate. Bull. JSME. 1980;23(183):1451-1458. DOI: 10.1299/jsme1958.23.1451.
  44. Bradbury LJS. Measurements with а puised and hot-wire anemometr in highly turbulent wave of a normal flat plate. J. Fluid Mech. 1976;77(3):473-497. DOI: 10.1017/S0022112076002218.
  45. Gadd GE. Two-dimensional separated or cavitating flow past a flat plate normal to the stream. ARC CP № 697.1962.
  46. Hussain AKMF, Thompson CA. Controlled symmetric perturbation of the plane jet: an experimental study in the initial region. J. Fluid Mech. 1980;100(2):397-431. DOI: 10.1017/S002211208000122X.
Received: 
04.10.1994
Accepted: 
14.05.1995
Published: 
15.12.1995