ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Kuzenkov O. A. Construction of the fitness function depending on a set of competing strategies based on the analysis of population dynamics. Izvestiya VUZ. Applied Nonlinear Dynamics, 2022, vol. 30, iss. 3, pp. 276-298. DOI: 10.18500/0869-6632-2022-30-3-276-298

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 332)
Full text PDF(En):
(downloads: 44)
Article type: 

Construction of the fitness function depending on a set of competing strategies based on the analysis of population dynamics

Kuzenkov Oleg Anatolevich, Lobachevsky State University of Nizhny Novgorod

The purpose of this work is to construct a fitness function that depends on the set of coexisting competing hereditary elements based on population dynamics in the “predator– prey” model with the logistic growth of prey. Materials and methods. The work uses the generalized Volterra model. The planktivorous fish plays the role of a predator. Many different species of zooplankton are considered as prey, which differ from each other in the hereditary strategies of daily vertical migrations. The model takes into account the intraspecific competition of prey. The peculiarity of the model consists of the presence of pairs of hereditary strategies in which the carriers of the first can displace the carriers of the second and vice versa — the carriers of the second can displace the carriers of the first, depending on the set of competing strategies in which they coexist. To restore the fitness function, the ranking method is used, which is reduced to the classification of ordered pairs of hereditary strategies into two classes “the first strategy displaces the second” and “the second displaces the first”. Results. The article presents a new methodology for constructing the fitness function. The technique involves two stages. First, the fitness function is reconstructed for a certain finite subset of elements on the basis of processing data on the long-term dynamics and comparing their competitive advantages. At the second stage, the form of the fitness function is derived for an arbitrary set of elements. It uses the features of interspecies interaction reflected in the model. With the help of the constructed fitness function, an evolutionarily stable regime of daily vertical migrations of zooplankton is modeled by numerically solving the minimax problem. Conclusion. The proposed method for constructing a fitness function that depends on a set of competing strategies is quite general and can be applied to a wide range of models of population dynamics. The strategy of diel vertical migrations of zooplankton constructed as a result of modeling is in good agreement with empirical data.

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (project No. 075-15-2021-634)
  1. Stucchi L, Pastor JM, Garc´ıa-Algarra J, Galeano J. A general model of population dynamics accounting for multiple kinds of interaction. Complexity. 2020;2020:7961327. DOI: 10.1155/2020/7961327.
  2. Victorov AA, Kholodnov VA. The mathematical model of population dynamics. Journal of Nanomedicine & Nanotechnology. 2019;5(1):009.
  3. Frisman EY, Zhdanova OL, Kulakov MP, Neverova GP, Revutskaya OL. Mathematical modeling of population dynamics based on recurrent equations: Results and prospects. Part I. Biology Bulletin. 2021;48(1):1–15. DOI: 10.1134/S1062359021010064.
  4. McBride JM, Nimphius S. Biological system energy algorithm reflected in sub-system joint work distribution movement strategies: influence of strength and eccentric loading. Scientific Reports. 2020;10(1):12052. DOI: 10.1038/s41598-020-68714-8.
  5. Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NAE, Arshad H. State-of-the-art in artificial neural network applications: A survey. Heliyon. 2018;4(11):e00938. DOI: 10.1016/j.heliyon.2018.e00938.
  6. Gorban AN, Zinovyev A. Principal manifolds and graphs in practice: from molecular biology to dynamical systems. International Journal of Neural Systems. 2010;20(3):219–232. DOI: 10.1142/S0129065710002383.
  7. Aynaud MM, Mirabeau O, Gruel N, Grossetete S, Boeva V, Durand S, Surdez D, Saulnier O, Zaidi S, Gribkova S, Fouche A, Kairov U, Raynal V, Tirode F, Grunewald TGP, Bohec M, Baulande S, Janoueix-Lerosey I, Vert JP, Barillot E, Delattre O, Zinovyev A. Transcriptional programs define intratumoral heterogeneity of ewing sarcoma at single-cell resolution. Cell Reports. 2020;30(6):1767–1779. DOI: 10.1016/j.celrep.2020.01.049.
  8. 8. Demidova A, Druzhinina O, Jacimovic M, Masina O, Mijajlovic N. Problems of synthesis, analysis and optimization of parameters for multidimensional mathematical models of interconnected populations dynamics. In: Jacimovic M, Khachay M, Malkova V, Posypkin M, editors. Optimization and Applications. OPTIMA 2019. Vol. 1145 of Communications in Computer and Information Science. Cham: Springer; 2020. P. 56–71. DOI: 10.1007/978-3-030-38603-0_5.
  9. Korobeinikov A, Shchepakina E, Sobolev V. A black swan and canard cascades in an SIR infectious disease model. Mathematical Biosciences and Engineering. 2019;17(1):725–736. DOI: 10.3934/mbe.2020037.
  10. Gavrilets S. Fitness Landscapes and the Origin of Species (MPB-41). Princeton: Princeton University Press; 2004. 480 p.
  11. Gyllenberg M, Metz JAJH, Service R. When do optimisation arguments make evolutionary sense? In: Chalub F, Rodrigues J, editors. The Mathematics of Darwin’s Legacy. Mathematics and Biosciences in Interaction. Basel: Springer; 2011. P. 233–268. DOI: 10.1007/978-3-0348-0122-5_12.
  12. Parvinen K, Dieckmann U, Heino M. Function-valued adaptive dynamics and the calculus of variations. Journal of Mathematical Biology. 2006;52(1):1–26. DOI: 10.1007/s00285-005-0329-3.
  13. Birch J. Natural selection and the maximization of fitness. Biological Reviews. 2016;91(3): 712–727. DOI: 10.1111/brv.12190.
  14. Kuzenkov O, Morozov A, Kuzenkova G. Recognition of patterns of optimal diel vertical migration of zooplankton using neural networks. In: 2019 International Joint Conference on Neural Networks (IJCNN). 14-19 July 2019, Budapest, Hungary. New York: IEEE; 2019. DOI: 10.1109/IJCNN.2019.8852060.
  15. Clark C, Mangel M. Dynamic State Variable Models in Ecology: Methods and Applications. Oxford: Oxford University Press; 2000. 289 p.
  16. Fiksen O, Giske J. Vertical distribution and population dynamics of copepods by dynamic optimization. ICES Journal of Marine Science. 1995;52(3–4):483–503. DOI: 10.1016/1054-3139(95)80062-X.
  17. Klimenko AY. Entropy and equilibria in competitive systems. Entropy. 2014;16(1):1–22. DOI: 10.3390/e16010001.
  18. Bratus AS, Semenov YS, Novozhilov AS. Adaptive fitness landscape for replicator systems: to maximize or not to maximize. Mathematical Modelling of Natural Phenomena. 2018;13(3):25–38. DOI: 10.1051/mmnp/2018040.
  19. Drozhzhin SV, Bratus AS. Mathematical model of evolution of replicator systems. Bulletin of Moscow University. Series: Computational Mathematics and Cybernetics. 2018;(3):36–41 (in Russian).
  20. Gorban AN. Equilibrium Bypass. Moscow: Nauka; 1984. 226 p. (in Russian).
  21. Gorban AN. Selection theorem for systems with inheritance. Mathematical Modelling of Natural Phenomena. 2007;2(4):1–45. DOI: 10.1051/mmnp:2008024.
  22. Gorban AN. Self-simplification in Darwin’s systems. In: Gorban A, Roose D, editors. Coping with Complexity: Model Reduction and Data Analysis. Vol. 75 of Lecture Notes in Computational Science and Engineering. Berlin, Heidelberg: Springer; 2011. P. 311–344. DOI: 10.1007/978-3-642-14941-2_17.
  23. Karev GP, Kareva IG. Replicator equations and models of biological populations and communities. Mathematical Modelling of Natural Phenomena. 2014;9(3):68–95. DOI: 10.1051/mmnp/20149305.
  24. Kuzenkov O, Ryabova E. Variational principle for self-replicating systems. Mathematical Modelling of Natural Phenomena. 2015;10(2):115–128. DOI: 10.1051/mmnp/201510208.
  25. Kuzenkov OA, Ryabova EA. Limit possibilities of solution of a hereditary control system. Differential Equations. 2015;51(4):523–532. DOI: 10.1134/S0012266115040096.
  26. Kuzenkov O, Morozov A. Towards the construction of a mathematically rigorous framework for the modelling of evolutionary fitness. Bulletin of Mathematical Biology. 2019;81(11):4675–4700. DOI: 10.1007/s11538-019-00602-3.
  27. Mohri M, Rostamizadeh A, Talwalkar A. Foundations of Machine Learning. Cambridge: The MIT Press; 2012. 432 p.
  28. Liu TY. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval. 2009;3(3):225–331. DOI: 10.1561/1500000016.
  29. Tax N, Bockting S, Hiemstra D. A cross-benchmark comparison of 87 learning to rank methods. Information Processing & Management. 2015;51(6):757–772. DOI: 10.1016/j.ipm.2015.07.002.
  30. Rahangdale A, Raut S. Machine learning methods for ranking. International Journal of Software Engineering and Knowledge Engineering. 2019;29(6):729–761. DOI: 10.1142/S021819401930001X.
  31. Ibrahim OAS, Landa-Silva D. An evolutionary strategy with machine learning for learning to rank in information retrieval. Soft Computing. 2018;22(10):3171–3185. DOI: 10.1007/s00500-017-2988-6.
  32. Oliveira IFD, Ailon N, Davidov O. A new and flexible approach to the analysis of paired comparison data. Journal of Machine Learning Research. 2018;19(60):1–29.
  33. Ailon N. An active learning algorithm for ranking from pairwise preferences with an almost optimal query complexity. Journal of Machine Learning Research. 2012;13(5):137–164.
  34. Kuzenkov O, Morozov A, Kuzenkova G. Exploring evolutionary fitness in biological systems using machine learning methods. Entropy. 2021;23(1):35. DOI: 10.3390/e23010035.
  35. Sandhu SK, Morozov A, Kuzenkov O. Revealing evolutionarily optimal strategies in self-reproducing systems via a new computational approach. Bulletin of Mathematical Biology. 2019;81(11):4701–4725. DOI: 10.1007/s11538-019-00663-4.
  36. Klimenko AY. Intransitivity in theory and in the real world. Entropy. 2015;17(6):4364–4412. DOI: 10.3390/e17064364.
  37. Ringelberg J. Diel Vertical Migration of Zooplankton in Lakes and Oceans. Dordrecht: Springer; 2010. 356 p. DOI: 10.1007/978-90-481-3093-1.
  38. Ostrovskii AG, Arashkevich EG, Solovyev VA, Shvoev DA. Seasonal variation of the sound-scattering zooplankton vertical distribution in the oxygen-deficient waters of the NE Black Sea. Ocean Science. 2021;17(4):953–974. DOI: 10.5194/os-17-953-2021.
  39. Sakinan S, Gucu AC. Spatial distribution of the Black Sea copepod, Calanus euxinus, estimated using multi-frequency acoustic backscatter. ICES Journal of Marine Science. 2017;74(3):832–846. DOI: 10.1093/icesjms/fsw183.
  40. Hays GC. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia. 2003;503(1–3):163–170. DOI: 10.1023/B:HYDR.0000008476.23617.b0.
  41. Kaiser MJ, Attrill MJ, Jennings S, Thomas D, Barnes DKA, Brierley AS, Polunin NVC, Raffaelli DG, Williams PJIB. Marine Ecology: Processes, Systems, and Impacts. Oxford: Oxford University Press; 2005. 557 p.
  42. Buesseler KO, Lamborg CH, Boyd PW, Lam PJ, Trull TW, Bidigare RR, Bishop JKB, Casciotti KL, Dehairs F, Elskens M, Honda M, Karl DM, Siegel DA, Silver MW, Steinberg DK, Valdes J, Mooy BV, Wilson S. Revisiting carbon flux through the ocean’s twilight zone. Science. 2007; 316(5824):567–570. DOI: 10.1126/science.1137959.
  43. Ducklow HW, Steinberg DK, Buesseler KO. Upper ocean carbon export and the biological pump. Oceanography. 2001;14(4):50–58. DOI: 10.5670/oceanog.2001.06.
  44. Isla A, Scharek R, Latasa M. Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean. Journal of Marine Systems. 2015;143:86–97. DOI: 10.1016/j.jmarsys.2014.10.017.
  45. Archibald KM, Siegel DA, Doney SC. Modeling the impact of zooplankton diel vertical migration on the carbon export flux of the biological pump. Global Biogeochemical Cycles. 2019;33(2): 181–199. DOI: 10.1029/2018GB005983.
  46. Arcifa MS, Perticarrari A, Bunioto TC, Domingos AR, Minto WJ. Microcrustaceans and predators: diel migration in a tropical lake and comparison with shallow warm lakes. Limnetica. 2016;35(2):281–296. DOI: 10.23818/limn.35.23.
  47. Hafker NS, Meyer B, Last KS, Pond DW, Huppe L, Teschke M. Circadian clock involvement in zooplankton diel vertical migration. Current Biology. 2017;27(14):2194–2201. DOI: 10.1016/j.cub.2017.06.025.
  48. Guerra D, Schroeder K, Borghini M, Camatti E, Pansera M, Schroeder A, Sparnocchia S, Chiggiato J. Zooplankton diel vertical migration in the Corsica Channel (north-western Mediterranean Sea) detected by a moored acoustic Doppler current profiler. Ocean Science. 2019;15(3): 631–649. DOI: 10.5194/os-15-631-2019.
  49. Wishner KF, Seibel B, Outram D. Ocean deoxygenation and copepods: coping with oxygen minimum zone variability. Biogeosciences. 2020;17(8):2315–2339. DOI: 10.5194/bg-17-2315-2020.
  50. Tutasi P, Escribano R. Zooplankton diel vertical migration and downward C flux into the oxygen minimum zone in the highly productive upwelling region off northern Chile. Biogeosciences. 2020;17(2):455–473. DOI: 10.5194/bg-17-455-2020.
  51. Baumgartner MF, Tarrant AM. The physiology and ecology of diapause in marine copepods. Annual Review of Marine Science. 2017;9:387–411. DOI: 10.1146/annurev-marine-010816- 060505.
  52. Tikhonov DA, Medvinsky AB. An analysis of mutual correlations between fluctuations in plankton population abundances and temperature variations based on the example of the ecosystem of the Naroch lakes. Biophysics. 2019;64(4):593–598. DOI: 10.1134/S0006350919040201.
  53. Giricheva E. The influence of trophic interactions in the plankton community on its spatiotemporal dynamics. Mathematical Biology and Bioinformatics. 2019;14(2):393–405 (in Russian). DOI: 10.17537/2019.14.393.
  54. Sergeeva VM, Drits AV, Flint MV. Distribution and feeding of dominant zooplankton species under autumn coccolithophorid development in the eastern part of the Barents Sea. Oceanology. 2019;59(5):658–668. DOI: 10.1134/S0001437019050175.
  55. Morozov A, Kuzenkov OA, Arashkevich EG. Modelling optimal behavioural strategies in structured populations using a novel theoretical framework. Scientific Reports. 2019;9(1):15020. DOI: 10.1038/s41598-019-51310-w.
  56. Morozov AY, Kuzenkov OA. Towards developing a general framework for modelling vertical migration in zooplankton. Journal of Theoretical Biology. 2016;405:17–28. DOI: 10.1016/j.jtbi.2016.01.011.
  57. Bazykin AD. Nonlinear Dynamics of Interacting Populations. Singapore: World Scientific; 1998. 216 p. DOI: 10.1142/2284.
  58. Riznichenko GY. Lectures on Mathematical Models in Biology. Moscow-Izhevsk: Regulyarnaya i Haoticheskaya Dinamika; 2002. 232 p. (in Russian).
  59. Bishop CM. Pattern Recognition and Machine Learning. New York: Springer-Verlag; 2006. 738 p.
  60. Danovaro R, Carugati L, Berzano M, Cahill AE, Carvalho S, Chenuil A, Corinaldesi C, Cristina S, David R, Dell’Anno A, Dzhembekova N, Garces E, Gasol JM, Goela P, Feral JP, Ferrera I, Forster RM, Kurekin AA, Rastelli E, Marinova V, Miller PI, Moncheva S, Newton A, Pearman JK, Pitois SG, Rene A, Rodriguez-Ezpeleta N, Saggiomo V, Simis SGH, Stefanova K, Wilson C, Martire ML, Greco S, Cochrane SKJ, Mangoni O, Borja A. Implementing and innovating marine monitoring approaches for assessing marine environmental status. Frontiers in Marine Science. 2016;3:213. DOI: 10.3389/fmars.2016.00213.
  61. Sato M. Variability in Diel Vertical Migration of Zooplankton and Physical Properties in Saanich Inlet, British Columbia. PhD Thesis. Victoria, Canada: University of Victoria; 2013. 122 p.
  62. Morozov AY, Kuzenkov OA, Sandhu SK. Global optimisation in Hilbert spaces using the survival of the fittest algorithm. Communications in Nonlinear Science and Numerical Simulation. 2021;103:106007. DOI: 10.1016/j.cnsns.2021.106007.