Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Для цитирования:

Кузенков О. А. Построение функции приспособленности, зависящей от множества конкурирующих стратегий, на основе анализа популяционной динамики // Известия вузов. ПНД. 2022. Т. 30, вып. 3. С. 276-298. DOI: 10.18500/0869-6632-2022-30-3-276-298

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 354)
Полный текст в формате PDF(En):
(загрузок: 342)
Язык публикации: 
русский
Тип статьи: 
Научная статья
УДК: 
51-76

Построение функции приспособленности, зависящей от множества конкурирующих стратегий, на основе анализа популяционной динамики

Авторы: 
Кузенков Олег Анатольевич, Национальный исследовательский Нижегородский государственный университет имени Н. И. Лобачевского (ННГУ)
Аннотация: 

Цель настоящей работы состоит в построении функции приспособленности, зависящей от множества сосуществующих конкурирующих наследственных элементов, на основе популяционной динамики в модели «хищник– жертва» с логистическим ростом жертв. Материалы и методы. В работе используется обобщенная модель Вольтерры. Роль хищника играет планктоноядная рыба. В качестве жертв рассматривается множество различных видов зоопланктона, которые отличаются друг от друга наследственными стратегиями ежедневных вертикальных миграций. Модель учитывает внутривидовую конкуренцию жертв. Особенность модели состоит в наличии пар наследственных стратегий, в которых носители первой могут вытеснять носителей второй и наоборот — носители второй вытеснять носителей первой, в зависимости от того, в каком множестве конкурирующих стратегий они сосуществуют. Для восстановления функции приспособленности применяется метод ранжирования, который сводится к классификации упорядоченных пар наследственных стратегий по двум классам «первая стратегия вытесняет вторую» и «вторая вытесняет первую». Результаты. В статье представлена новая методика построения функции приспособленности. Методика предполагает два этапа. Сначала восстанавливается функция приспособленности для некоторого конечного подмножества элементов на основе обработки данных долгосрочной динамики их численностей и сравнения их конкурентных преимуществ. На втором этапе выводится форма функции приспособленности для произвольного множества элементов. Здесь используются особенности межвидового взаимодействия, отраженные в модели. С помощью построенной функции приспособленности моделируется эволюционно устойчивый режим суточных вертикальных миграций зоопланктона путем численного решения минимаксной задачи. Заключение. Предложенная методика построения функции приспособленности, зависящей от множества конкурирующих стратегий, является достаточно общей и вполне может быть применена для широкого круга моделей популяционной динамики. Построенная в результате моделирования стратегия суточных вертикальных миграций зоопланктона хорошо согласуется с эмпирическими данными.

Благодарности: 
Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации (проект № 075-15-2021-634)
Список источников: 
  1. Stucchi L., Pastor J. M., Garcia-Algarra J., Galeano J. A general model of population dynamics accounting for multiple kinds of interaction // Complexity. 2020. Vol. 2020. P. 7961327. DOI: 10.1155/2020/7961327.
  2. Victorov A. A., Kholodnov V. A. The mathematical model of population dynamics // Journal of Nanomedicine & Nanotechnology. 2019. Vol. 5, no. 1. P. 009.
  3. Frisman E. Y., Zhdanova O. L., Kulakov M. P., Neverova G. P., Revutskaya O. L. Mathematical modeling of population dynamics based on recurrent equations: Results and prospects. Part I // Biology Bulletin. 2021. Vol. 48, no. 1. P. 1–15. DOI: 10.1134/S1062359021010064.
  4. McBride J. M., Nimphius S. Biological system energy algorithm reflected in sub-system joint work distribution movement strategies: influence of strength and eccentric loading // Scientific Reports. 2020. Vol. 10, no. 1. P. 12052. DOI: 10.1038/s41598-020-68714-8.
  5. Abiodun O. I., Jantan A., Omolara A. E., Dada K. V., Mohamed N. A. E., Arshad H. State-of-the-art in artificial neural network applications: A survey // Heliyon. 2018. Vol. 4, no. 11. P. e00938. DOI: 10.1016/j.heliyon.2018.e00938.
  6. Gorban A. N., Zinovyev A. Principal manifolds and graphs in practice: from molecular biology to dynamical systems // International Journal of Neural Systems. 2010. Vol. 20, no. 3. P. 219–232. DOI: 10.1142/S0129065710002383.
  7. Aynaud M.-M., Mirabeau O., Gruel N., Grossetete S., Boeva V., Durand S., Surdez D., Saulnier O., Zaidi S., Gribkova S., Fouche A., Kairov U., Raynal V., Tirode F., Grunewald T. G. P., Bohec M., Baulande S., Janoueix-Lerosey I., Vert J.-P., Barillot E., Delattre O., Zinovyev A. Transcriptional programs define intratumoral heterogeneity of ewing sarcoma at single-cell resolution // Cell Reports. 2020. Vol. 30, no. 6. P. 1767–1779. DOI: 10.1016/j.celrep.2020.01.049.
  8. Demidova A., Druzhinina O., Jacimovic M., Masina O., Mijajlovic N. ´ Problems of synthesis, analysis and optimization of parameters for multidimensional mathematical models of interconnected populations dynamics // In: Jacimovic M., Khachay M., Malkova V., Posypkin M. (eds) Optimization and Applications. OPTIMA 2019. Vol. 1145 of Communications in Computer and Information Science. Cham: Springer, 2020. P. 56–71. DOI: 10.1007/978-3-030-38603-0_5.
  9. Korobeinikov A., Shchepakina E., Sobolev V. A black swan and canard cascades in an SIR infectious disease model // Mathematical Biosciences and Engineering. 2019. Vol. 17, no. 1. P. 725–736. DOI: 10.3934/mbe.2020037.
  10. Gavrilets S. Fitness Landscapes and the Origin of Species (MPB-41). Princeton: Princeton University Press, 2004. 480 p.
  11. Gyllenberg M., Metz J. A. J. H., Service R. When do optimisation arguments make evolutionary sense? // In: Chalub F., Rodrigues J. (eds) The Mathematics of Darwin’s Legacy. Mathematics and Biosciences in Interaction. Basel: Springer, 2011. P. 233–268. DOI: 10.1007/978-3-0348-0122-5_12.
  12. Parvinen K., Dieckmann U., Heino M. Function-valued adaptive dynamics and the calculus of variations // Journal of Mathematical Biology. 2006. Vol. 52, no. 1. P. 1–26. DOI: 10.1007/s00285-005-0329-3.
  13. Birch J. Natural selection and the maximization of fitness // Biological Reviews. 2016. Vol. 91, no. 3. P. 712–727. DOI: 10.1111/brv.12190. 
  14. Kuzenkov O., Morozov A., Kuzenkova G. Recognition of patterns of optimal diel vertical migration of zooplankton using neural networks // In: 2019 International Joint Conference on Neural Networks (IJCNN). 14-19 July 2019, Budapest, Hungary. New York: IEEE, 2019. DOI: 10.1109/IJCNN.2019.8852060.
  15. Clark C., Mangel M. Dynamic State Variable Models in Ecology: Methods and Applications. Oxford: Oxford University Press, 2000. 289 p.
  16. Fiksen O., Giske J. Vertical distribution and population dynamics of copepods by dynamic optimization // ICES Journal of Marine Science. 1995. Vol. 52, no. 3–4. P. 483–503. DOI: 10.1016/1054-3139(95)80062-X.
  17. Klimenko A. Y. Entropy and equilibria in competitive systems // Entropy. 2014. Vol. 16, no. 1. P. 1–22. DOI: 10.3390/e16010001.
  18. Bratus A. S., Semenov Y. S., Novozhilov A. S. Adaptive fitness landscape for replicator systems: to maximize or not to maximize // Mathematical Modelling of Natural Phenomena. 2018. Vol. 13, no. 3. P. 25–38. DOI: 10.1051/mmnp/2018040.
  19. Дрожжин С. В., Братусь А. С. Математическая модель эволюции репликаторных систем // Вестник Московского университета. Сер. Вычислительная математика и кибернетика. 2018. № 3. С. 36–41.
  20. Горбань А. Н. Обход равновесия. М.: Наука, 1984. 226 с.
  21. Gorban A. N. Selection theorem for systems with inheritance // Mathematical Modelling of Natural Phenomena. 2007. Vol. 2, no. 4. P. 1–45. DOI: 10.1051/mmnp:2008024.
  22. Gorban A. N. Self-simplification in Darwin’s systems // In: Gorban A., Roose D. (eds) Coping with Complexity: Model Reduction and Data Analysis. Vol. 75 of Lecture Notes in Computational Science and Engineering. Berlin, Heidelberg: Springer, 2011. P. 311–344. DOI: 10.1007/978-3-642-14941-2_17.
  23. Karev G. P., Kareva I. G. Replicator equations and models of biological populations and communities // Mathematical Modelling of Natural Phenomena. 2014. Vol. 9, no. 3. P. 68–95. DOI: 10.1051/mmnp/20149305.
  24. Kuzenkov O., Ryabova E. Variational principle for self-replicating systems // Mathematical Modelling of Natural Phenomena. 2015. Vol. 10, no. 2 P. 115–128. DOI: 10.1051/mmnp/201510208.
  25. Kuzenkov O. A., Ryabova E. A. Limit possibilities of solution of a hereditary control system // Differential Equations. 2015. Vol. 51, no. 4. P. 523–532. DOI: 10.1134/S0012266115040096.
  26. Kuzenkov O., Morozov A. Towards the construction of a mathematically rigorous framework for the modelling of evolutionary fitness // Bulletin of Mathematical Biology. 2019. Vol. 81, no. 11. P. 4675–4700. DOI: 10.1007/s11538-019-00602-3.
  27. Mohri M., Rostamizadeh A., Talwalkar A. Foundations of Machine Learning. Cambridge: The MIT Press, 2012. 432 p.
  28. Liu T.-Y. Learning to rank for information retrieval // Foundations and Trends in Information Retrieval. 2009. Vol. 3, no. 3. P. 225–331. DOI: 10.1561/1500000016.
  29. Tax N., Bockting S., Hiemstra D. A cross-benchmark comparison of 87 learning to rank methods // Information Processing & Management. 2015. Vol. 51, no. 6. P. 757–772. DOI: 10.1016/j.ipm.2015.07.002.
  30. Rahangdale A., Raut S. Machine learning methods for ranking // International Journal of Software Engineering and Knowledge Engineering. 2019. Vol. 29, no. 6. P. 729–761. DOI: 10.1142/S021819401930001X.
  31. Ibrahim O. A. S., Landa-Silva D. An evolutionary strategy with machine learning for learning to rank in information retrieval // Soft Computing. 2018. Vol. 22, no. 10. P. 3171–3185. DOI: 10.1007/s00500-017-2988-6.
  32. Oliveira I. F. D., Ailon N., Davidov O. A new and flexible approach to the analysis of paired comparison data // Journal of Machine Learning Research. 2018. Vol. 19, no. 60. P. 1–29.
  33. Ailon N. An active learning algorithm for ranking from pairwise preferences with an almost optimal query complexity // Journal of Machine Learning Research. 2012. Vol. 13, no. 5. P. 137–164.
  34. Kuzenkov O., Morozov A., Kuzenkova G. Exploring evolutionary fitness in biological systems using machine learning methods // Entropy. 2021. Vol. 23, no. 1. P. 35. DOI: 10.3390/e23010035.
  35. Sandhu S. K., Morozov A., Kuzenkov O. Revealing evolutionarily optimal strategies in self-reproducing systems via a new computational approach // Bulletin of Mathematical Biology. 2019. Vol. 81, no. 11. P. 4701–4725. DOI: 10.1007/s11538-019-00663-4.
  36. Klimenko A. Y. Intransitivity in theory and in the real world // Entropy. 2015. Vol. 17, no. 6. P. 4364–4412. DOI: 10.3390/e17064364.
  37. Ringelberg J. Diel Vertical Migration of Zooplankton in Lakes and Oceans. Dordrecht: Springer, 2010. 356 p. DOI: 10.1007/978-90-481-3093-1.
  38. Ostrovskii A. G., Arashkevich E. G., Solovyev V. A., Shvoev D. A. Seasonal variation of the sound scattering zooplankton vertical distribution in the oxygen-deficient waters of the NE Black Sea // Ocean Science. 2021. Vol. 17, no. 4. P. 953–974. DOI: 10.5194/os-17-953-2021.
  39. Sakinan S., Gucu A. C. Spatial distribution of the Black Sea copepod, Calanus euxinus, estimated using multi-frequency acoustic backscatter // ICES Journal of Marine Science. 2017. Vol. 74, no. 3. P. 832–846. DOI: 10.1093/icesjms/fsw183.
  40. Hays G. C. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations // Hydrobiologia. 2003. Vol. 503, no. 1–3. P. 163–170. DOI: 10.1023/B:HYDR.0000008476.23617.b0.
  41. Kaiser M. J., Attrill M. J., Jennings S., Thomas D., Barnes D. K. A., Brierley A. S., Polunin N. V. C., Raffaelli D. G., Williams P. J. I. B. Marine Ecology: Processes, Systems, and Impacts. Oxford: Oxford University Press, 2005. 557 p.
  42. Buesseler K. O., Lamborg C. H., Boyd P. W., Lam P. J., Trull T. W., Bidigare R. R., Bishop J. K. B., Casciotti K. L., Dehairs F., Elskens M., Honda M., Karl D. M., Siegel D. A., Silver M. W., Steinberg D. K., Valdes J., Mooy B. V., Wilson S. Revisiting carbon flux through the ocean’s twilight zone // Science. 2007. Vol. 316, no. 5824. P. 567–570. DOI: 10.1126/science.1137959.
  43. Ducklow H. W., Steinberg D. K., Buesseler K. O. Upper ocean carbon export and the biological pump // Oceanography. 2001. Vol. 14, no. 4. P. 50–58. DOI: 10.5670/oceanog.2001.06.
  44. Isla A., Scharek R., Latasa M. Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean // Journal of Marine Systems. 2015. Vol. 143. P. 86–97. DOI: 10.1016/j.jmarsys.2014.10.017.
  45. Archibald K. M., Siegel D. A., Doney S. C. Modeling the impact of zooplankton diel vertical migration on the carbon export flux of the biological pump // Global Biogeochemical Cycles. 2019. Vol. 33, no. 2. P. 181–199. DOI: 10.1029/2018GB005983.
  46. Arcifa M. S., Perticarrari A., Bunioto T. C., Domingos A. R., Minto W. J. Microcrustaceans and predators: diel migration in a tropical lake and comparison with shallow warm lakes // Limnetica. 2016. Vol. 35, no. 2. P. 281–296. DOI: 10.23818/limn.35.23.
  47. Hafker N. S., Meyer B., Last K. S., Pond D. W., Huppe L., Teschke M. Circadian clock involvement in zooplankton diel vertical migration // Current Biology. 2017. Vol. 27, no. 14. P. 2194–2201. DOI: 10.1016/j.cub.2017.06.025.
  48. Guerra D., Schroeder K., Borghini M., Camatti E., Pansera M., Schroeder A., Sparnocchia S., Chiggiato J. Zooplankton diel vertical migration in the Corsica Channel (north-western Mediterranean Sea) detected by a moored acoustic Doppler current profiler // Ocean Science. 2019. Vol. 15, no. 3. P. 631–649. DOI: 10.5194/os-15-631-2019.
  49. Wishner K. F., Seibel B., Outram D. Ocean deoxygenation and copepods: coping with oxygen minimum zone variability // Biogeosciences. 2020. Vol. 17, no. 8. P. 2315–2339. DOI: 10.5194/bg-17-2315-2020.
  50. Tutasi P., Escribano R. Zooplankton diel vertical migration and downward C flux into the oxygen minimum zone in the highly productive upwelling region off northern Chile // Biogeosciences. 2020. Vol. 17, no. 2. P. 455–473. DOI: 10.5194/bg-17-455-2020.
  51. Baumgartner M. F., Tarrant A. M. The physiology and ecology of diapause in marine copepods // Annual Review of Marine Science. 2017. Vol. 9. P. 387–411. DOI: 10.1146/annurev-marine010816-060505.
  52. Тихонов Д. А., Медвинский А. Б. Анализ взаимных корреляций между колебаниями обилия популяций планктона и корреляций между колебаниями планктонного обилия и вариациями температуры на примере экосистемы Нарочанских озер // Биофизика. 2019. № 4. С. 747–753. DOI: 10.1134/S0006302919040148.
  53. Гиричева Е. Е. Влияние трофических отношений в сообществе планктона на его пространственно-временную динамику // Математическая биология и биоинформатика. 2019. Т. 14, № 2. С. 393–405. DOI: 10.17537/2019.14.393.
  54. Сергеева В. М., Дриц А. В., Флинт М. В. Особенности распределения и питания доминирующих видов зоопланктона в условиях осеннего развития кокколитофорид в восточной части Баренцева моря // Океанология. 2019. Т. 59, № 5. C. 734–745. DOI: 10.31857/S0030-1574595734-745.
  55. Morozov A., Kuzenkov O. A., Arashkevich E. G. Modelling optimal behavioural strategies in structured populations using a novel theoretical framework // Scientific Reports. 2019. Vol. 9, no. 1. P. 15020. DOI: 10.1038/s41598-019-51310-w.
  56. Morozov A. Y., Kuzenkov O. A. Towards developing a general framework for modelling vertical migration in zooplankton // Journal of Theoretical Biology. 2016. Vol. 405. P. 17–28. DOI: 10.1016/j.jtbi.2016.01.011.
  57. Базыкин А. Д. Нелинейная динамика взаимодействующих популяций. Москва-Ижевск: Институт компьютерных исследований, 2003. 368 с.
  58. Ризниченко Г.Ю. Лекции по математическим моделям в биологии. Москва-Ижевск: Регулярная и хаотическая динамика, 2002. 232 с.
  59. Бишоп К. М. Распознавание образов и машинное обучение. М.: Вильямс, 2020. 960 с.
  60. Danovaro R., Carugati L., Berzano M., Cahill A. E., Carvalho S., Chenuil A., Corinaldesi C., Cristina S., David R., Dell’Anno A., Dzhembekova N., Garces E., Gasol J. M., Goela P., Fe-ral J.-P., Ferrera I., Forster R. M., Kurekin A. A., Rastelli E., Marinova V., Miller P. I., Moncheva S., Newton A., Pearman J. K., Pitois S. G., Ren˜e A., Rodrıguez-Ezpeleta N., Saggiomo V., Simis S. G. H., Stefanova K., Wilson C., Martire M. L., Greco S., Cochrane S. K. J., Mangoni O., Borja A. Implementing and innovating marine monitoring approaches for assessing marine environmental status // Frontiers in Marine Science. 2016. Vol. 3. P. 213. DOI: 10.3389/fmars.2016.00213.
  61. Sato M. Variability in Diel Vertical Migration of Zooplankton and Physical Properties in Saanich Inlet, British Columbia. PhD Thesis. Victoria, Canada: University of Victoria, 2013. 122 p.
  62. Morozov A. Y., Kuzenkov O. A., Sandhu S. K. Global optimisation in Hilbert spaces using the survival of the fittest algorithm // Communications in Nonlinear Science and Numerical Simulation. 2021. Vol. 103. P. 106007. DOI: 10.1016/j.cnsns.2021.106007.
Поступила в редакцию: 
08.11.2021
Принята к публикации: 
04.04.2022
Опубликована: 
31.05.2022