ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Dubinov A. E., Selemir V. D. Description of flat electromagnetic waves through stationary fractal media. Izvestiya VUZ. Applied Nonlinear Dynamics, 1995, vol. 3, iss. 1, pp. 82-89. DOI: 10.18500/0869-6632-1995-3-1-82-89

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
537.876.23

Description of flat electromagnetic waves through stationary fractal media

Autors: 
Dubinov Aleksandr Evgenevich, NATIONAL RESEARCH NUCLEAR UNIVERSITY "MEPHI" (NRNU MEPHI) OBNINSK INSTITUTE OF ATOMIC ENERGY (IATE)
Selemir Viktor Dmitrievich, NATIONAL RESEARCH NUCLEAR UNIVERSITY "MEPHI" (NRNU MEPHI) OBNINSK INSTITUTE OF ATOMIC ENERGY (IATE)
Abstract: 

New wave equations, describing electromagnetic propagation through ractal media, are derived. The formalism of fractional order of integration and differentiation serves as а basis for the derivation, mentioned above. The equations derived can be used atг studying propagation of electromagnetic waves through highly turbulized fluxes of liquid, gas and plasma.

Key words: 
Reference: 
  1. Mandelbrot BB. Fractals, Form, Chance, and Dimension. San Francisco: W.H.Freeman; 1977. 365 p.
  2. Bahavar JR, Willemsen JF. Probability density for diffusion on fractals. Phys. Rev. В. 1984;30(11):6778-6779. DOI: 10.1103/PhysRevB.30.6778.
  3. Sokolov IM. Dimensionalities and other geometric critical exponents in percolation theory. Sov. Phys. Usp. 1986;29(10):924-945. DOI: 10.1070/PU1986v029n10ABEH003526.
  4. Noskov МD, Shapovalov АV. Passage of a quantum particle through a one-dimensional fractal potential barrier. Rus. Phys. J. 1993;7:120-127.
  5. Dе Vries Р, de Raedt Н, Lagendijk А. Wave localization in disordered and fractal systems. Comp. Phys. Comm. 1993;75(3):298-310. DOI: 10.1016/0010-4655(93)90046-F.
  6. Nigmatullin RR. Fractional integral and its physical interpretation. Theor. Math. Phys. 1992;90(3):242-251. DOI: 10.1007/BF01036529.
  7. Wyss W. The fractional diffusion equation. J. Math. Phys. 1986;27(11):2782.
  8. Schneider WR, Wyss W. Fractional diffusion and wave equations. J. Math. Phys. 1989;30(1):134-144. DOI: 10.1063/1.528578.
  9. Smirnov MM. Mixed Type Equations. M.: Vysshaya Shkola; 1985. 304 p.
  10. Muskhelishvili NI. Singular Integral Equations. M.: Nauka; 1968. 511 p.
  11. Triebel H. Theory of Function Spaces. Basel: Birkhauser; 1983. 281 p. DOI: 10.1007/978-3-0346-0416-1.
  12. Feder J. Fractals. N.Y.: Springer; 1988. 284 p. DOI: 10.1007/978-1-4899-2124-6.
  13. Zygmund A. Trigonometric Series. Cambridge: Cambridge University Press; 2002. 383 p.
  14. Drinfeld GI. Supplement to the General Course of Mathematical Analysis. Kharkiv: Kharkiv University Publishing; 1958. 118 p.
  15. Samko SG, Kilbas АА, Marichev ОI. Integrals and Derivatives of Fractional Order and Some of Their Applicationsя. Minsk: Nauka i Tekhnika; 1987. 687 p.
  16. Konotop VV, Bulgakov SA. Two-scale method in the theory of scattering by fractal structures: one-dimensional regular problems. Phys. Rev. А. 1992;45(8):5994-6007. DOI: 10.1103/physreva.45.5994.
Received: 
07.10.1994
Accepted: 
25.04.1995
Published: 
15.09.1995