ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Seleznev M. E., Dudko G. M., Nikulin Y. V., Khivintsev Y. V., Sakharov V. K., Kozhevnikov A. V., Vysotskii S. L., Filimonov Y. A. Detection of focused beams of surface magnetostatic waves in YIG / Pt structures. Izvestiya VUZ. Applied Nonlinear Dynamics, 2024, vol. 32, iss. 3, pp. 405-418. DOI: 10.18500/0869-6632-003104, EDN: MYWMNM

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Language: 
Russian
Article type: 
Article
UDC: 
537.86
EDN: 

Detection of focused beams of surface magnetostatic waves in YIG / Pt structures

Autors: 
Seleznev M. E., Saratov State University
Dudko Galina Mihajlovna, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Nikulin Y. V., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Khivintsev Y. V., Saratov State University
Sakharov Valentin Konstantinovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Kozhevnikov Aleksandr Vladimirovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Vysotskii S. L., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Filimonov Y. A., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

The purpose of this work is to experimentally study, using the inverse spin Hall effect (ISHE), the detection of focused beams of magnetostatic surface waves (MSSW) in integrated YIG (3.9 µm) / Pt (4 nm) thin-film microstructures, where the focusing effect was ensured by the curvilinear shape of the exciting antenna. Make a comparison with the case of detecting MSSWs excited by a rectilinear antenna.

Methods. Experiments were carried out using the delay line structures based on the YIG/Pt. The amplitude-frequency characteristics of the YIG/Pt structure and the frequency dependence of the EMF (V(f)) induced in platinum were studied.

Results. It was shown that at frequencies f near the long-wavelength limit of the MSSW spectrum, the magnitude of the EMF V(f) generated by a focused MSSW can be several times higher than the values of V(f) in the case of MSSW excitation by a common (straight) antenna. In this case, in the short-wavelength part of the spectrum, on the contrary, the magnitude of the EMF generated by the focused MSSW beam turns out to be noticeably smaller. This behavior is associated with chromatic aberration of the focusing antenna for the MSSW, which manifests itself in the frequency dependence of the focal length of the antenna, which is confirmed by the results of micromagnetic modeling. It is shown that the drop in the EMF signal generated by a focused MSSW beam in the short-wavelength part of the spectrum is associated with the focus reaching the area of the YIG not covered with the Pt film. In this case, the increase in V(f) in the long-wavelength region of the MSSW spectrum is explained by an increase in the linear power density of the MSSW and the formation of caustics under the Pt film.

Conclusion. Obtained results can be used for the development of highly sensitive spin wave detectors and the creation of spin logic devices.

Acknowledgments: 
The work was supported by RSF grant No. 22-19-00500
Reference: 
  1. Nikitov SA, Kaliabin DV, Lisenkov IV, Slavin AN, Barabanenkov YuN, Osokin SA, Sadovnikov AV, Beginin EN, Morozova MA, Sharaevskii YuP, Filimonov YA, Khivintsev YV, Vysotskii SL, Sakharov VK, Pavlov ES. Magnonics: a new research area in spintronics and spin wave electronics. Phys. Usp. 2015;58(10):1002–1028. DOI: 10.3367/UFNr.0185. 201510m.1099.
  2. Nikitov SA, Safin AR, Kalyabin DV, Sadovnikov AV, Beginin EN, Logunov MV, Morozova MA, Odintsov SA, Osokin SA, Sharaevskaya AYu, Sharaevsky YuP, Kirilyuk AI. Dielectric magnonics: from gigahertz to terahertz. Phys. Usp. 2020;63:945–974. DOI: 10.3367/UFNe.2019.07.038609.
  3. Chumak AA, Vasyuchka VI, Serga AA, Hillebrands B. Magnon spintronics. Nature Phys. 2015; 11:453. DOI: doi:10.1038/nphys3347.
  4. Demidov VE, Urazhdin S, Loubens G, Klein O, Cros V, Anane A, Demokritov SO. Magnetization oscillations and waves driven by pure spin currents. Phys. Rep. 2017;673:1–31. DOI: 10.1016/ j.physrep.2017.01.001.
  5. Althammer M. Pure spin currents in magnetically ordered insulator/normal metal heterostructures. J. Phys. D: Appl. Phys. 2018;51:313001. DOI: 10.1088/1361-6463/aaca89.
  6. Demidov VE, Urazhdin S, Anane A, Cros V, Demokritov SO. Spin–orbit-torque magnonics. Journal of Applied Physics. 2020;127(17):170901. DOI: 10.1063/5.0007095.
  7. Brataas A., van Wees B., Klein O., de Loubens G., Viret M. Spin insulatronics. Physics Reports. 2020;885:1–27. DOI: 10.1016/j.physrep.
  8. Mahmoud A, Ciubotaru F, Vanderveken F, Chumak AV, Hamdioui S, Adelmann C, Cotofana S. Introduction to spin wave computing. J. Appl. Phys. 2020;128(16):161101. DOI: 10.1063/ 5.0019328.
  9. Chumak AV, Kabos P, Wu M, Abert C, Adelmann C, Adeyeye AO, Akerman J, Aliev FG, Anane A, Awad A, Back CH, Barman A, Bauer GEW, Becherer M, Beginin EN, Bittencourt VASV, Blanter YM, Bortolotti P., Boventer I, Bozhko DA, Bunyaev SA, Carmiggelt JJ, Cheenikundil RR, Ciubotaru F, Cotofana S, Csaba G, Dobrovolskiy OV, Dubs C, Elyasi M, Fripp KG, Fulara H, Golovchnsiy IA, Gonzalez-Ballster C, Graczyk P, Grundler D, Gruszecki P, Gubbiotti G, Guslienko K, Haldar A, Hamdioui S, Hertel R, Hillebrands B, Hioki T, Houshang A, Hu CM, Huebl H, Huth M, Iacocca E, Jungfleisch MB, Kakazei GN, Khitun A, Khymyn R, Kikkawa T, Klaui M, Klein O, Klos JW, Knauer S, Koraltan S, Kostylev M, Krawczyk M, Krivorotov IN, Kruglyak VV, Lachance-Quirion D, Ladak S, Lebrun R, Li Y, Linder M, Macedo R, Mayr S, Melkov GA, Mieszczak S, Nakamura Y, Nembach HT, Nikitin AA, Nikitov SA, Novosad V, Otalora JA, Otani Y, Papp A, Pigeau B, Pirro P, Porod W, Porrati F, Qin H, Rana B, Reimann T, Reinte F, Romero-Isart O, Ross A, Sadovnikov AV, Safin AR, Saitoh E, Schmidt G, Schultheiss H, Schultheiss K, Serga AA, Sharma S, Shaw JM, Suess D, Surzhenko O, Szulc K, Taniguchi T, Urbanek M, Usami K, Ustinov AB, van der Sar T, van Dijken S, Vasyuchka VI, Verba R, Kusminskiy SV, Wang Q, Weides M, Weiler M, Wintz S, Wolski SP, Zhang X. Advances in Magnetics Roadmap on Spin-Wave Computing. IEEE Transactions on Magnetics. 2022;58(6): 0800172. DOI: 10.1109/TMAG.2022.3149664.
  10. Khitun A. Magnonic holographic devices for special type data processing. J. Appl. Phys. 2013;113(16):164503. DOI: 10.1063/1.4802656.
  11. Gertz F, Kozhevnikov A, Filimonov Y, Nikonov DE, Khitun A. Magnonic holographic memory: From proposal to device. IEEE J.Explor. Solid-State Comput. Devices Circuits. 2015;1:67–75. DOI: 10.1109/JXCDC.2015.2461618.
  12. Khivintsev Y, Ranjbar M, Gutierrez D, Chiang H, Kozhevnikov A, Filimonov Y, Khitun A. Prime factorization using magnonic holographic devices. J. Appl. Phys. 2016;120(12):123901. DOI: 10.1063/1.4962740.
  13. Gutierrez D, Chiang H, Bhowmick T, Volodchenkov AD, Ranjbar M, Liu G, Jiang C, Warren C, Khivintsev Y, Filimonov Y, Garay J, Lake R, Balandin AA, Khitun A. Magnonic holographic imaging of magnetic microstructures. JMMM. 2017;428:348–356. DOI: 10.1016/j.jmmm. 2016.12.022.
  14. Papp A, Porod W, Csurgay AI, Csaba G. Nanoscale spectrum analyzer based on spin-wave interference. Sci. Rep. 2017;7:9245. DOI: 10.1038/s41598-017-09485-7.
  15. Csaba G, Papp A, Porod W. Holographic Algorithms for On-Chip, Non-Boolean Computing. In: Proceedings of the 17th International Workshop on Computational Electronics (IWCE 2014). 2014, Paris, France. P. 33–34. DOI: 10.1109/IWCE.2014.6865814.
  16. Csaba G, Papp A, Porod W. Perspectives of using spin waves for computing and signal processing. Phys. Lett. A. 2017;381:1471. DOI: 10.1016/j.physleta.2017.02.042.
  17. Macia F, Kent AD, Hoppensteadt FC. Spin-wave interference patterns created by spin-torque nanooscillators for memory and computation. Nanotechnology. 2011;22:095301. DOI: 10.1088/0957-4484/22/9/095301.
  18. Csaba G., Papp A., Porod W. Spin-wave based realization of optical computing primitives. J. Appl.Phys. 2014;115(17):17C741. DOI: 10.1063/1.4868921.
  19. Vogel M, Hillebrands B, von Freymann G. Spin-Wave Optical Elements: Towards Spin-wave Fourier Optics. arXiv:1906.02301v1 [physics.app-ph]
  20. Papp A, Csaba G. Lens Design for Computing With Anisotropic Spin Waves. IEEE Magn. Lett. 2018;9:3706405. DOI: 10.1109/LMAG.2018.2872127.
  21. Vashkovskii AV, Stalmakhov AV, Shakhnazaryan DG. Forming, reflection and refraction of magnetostatic waves beams. Soviet Physics Journal. 1988;31:908–915. DOI: 10.1007/BF00893543.
  22. Davies CS, Kruglyak VV. Graded-index magnonics. Low Temperature Physics. 2015;41:760–766. DOI: 10.1063/1.4932349.
  23. Schneider T, Serga AA, Chumak AV, Sandweg CW, Trudel S, Wolff S, Kostylev MP, Tiberkevich VS, Slavin AN, Hillebrands B. Nondiffractive subwavelength wave beams in a medium with externally controlled anisotropy. Phys. Rev. Lett. 2010;104:197203. DOI: 10.1103/PhysRevLett.104.197203.
  24. Ulrichs H, Demidov VE, Demokritov SO, Urazhdin S. Spin-torque nano-emitters for magnonic applications. Appl. Phys. Lett. 2012;100:162406. DOI: 10.1063/1.4704563.
  25. Gieniusz R, Ulrichs H, Bessonov VD, Guzowska U, Stognii AI, Maziewski A. Single antidot as a passive way to create caustic spin-wave beams in yttrium iron garnet films. Appl. Phys. Lett. 2013;102:102409. DOI: 10.1063/1.4795293
  26. Gieniusz R, Bessonov VD, Guzowska U, Stognii AI, Maziewski A. An antidot array as an edge for total non-reflection of spin waves in yttrium iron garnet films. Appl. Phys. Lett. 2014;104(8):082412. DOI: 10.1063/1.4867026.
  27. Mansfeld S, Topp J, Martens K, Toedt JN, Hansen W, Heitmann D, Mendach S. Spin Wave Diffraction and Perfect Imaging of a Grating. Phys. Rev. Lett. 2012;108:047204. DOI: 10.1103/ PhysRevLett.108.047204.
  28. Choi S, Lee KS, Kim SK. Spin-wave interference. Appl. Phys. Lett. 2006;89(6):062501. DOI: 10.1063/1.2259813.
  29. Gruszecki P, Kasprzak M, Serebryannikov AE, Krawczyk M, Smigaj W. Microwave excitation of spin wave beams in thin ferromagnetic films. Sci. Rep. 2016;6: 22367. DOI: 10.1038/srep22367.
  30. Korner HS, Stigloher J, Back CH. Excitation and tailoring of diffractive spin-wave beams in NiFe using nonuniform microwave antennas. Phys. Rev. B. 2017;96:100401(R). DOI: 10.1103/ PhysRevB.96.100401.
  31. Loayza N, Jungfleisch MB, Hoffmann A, Bailleul M, Vlaminck V. Fresnel diffraction of spin waves. Phys. Rev. B. 2018;98:144430. DOI: 10.1103/PhysRevB.98.144430.
  32. Madami M, Khivintsev Y, Gubbiotti G, Dudko G, Kozhevnikov A, Sakharov V, Stal’makhov A, Khitun A, Filimonov Y. Nonreciprocity of backward volume spin wave beams excited by the curved focusing transducer. Appl. Phys. Lett. 2018;113(15):152403. DOI: 10.1063/1.5050347.
  33. Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S, Saitoh E. Transmission of electrical signals by spin-wave in-ter-conversion in a magnetic insulator. Nature. 2010;464:262–266. DOI: 10.1038/nature08876.
  34. Collet M, de Milly X, d’Allivy Kelly O, Naletov VV, Bernard R, Bortolotti P, Ben Youssef J, Demidov VE, Demokritov SO, Prieto JL, Munoz M, Cros V, Anane A, de Loubens G, Klein O. Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque. Nat Commun. 2016;7:10377. DOI: 10.1038/ncomms10377.
  35. Uchida KI, Adachi H, Ota T, Nakayama H, Maekawa S, Saitoh E. Observation of longitudinal spin-Seebeck effect in magnetic insulators. Appl. Phys. Lett. 2010;97(17):172505. DOI: 10.1063/ 1.3507386.
  36. Chumak AV, Serga AA, Jungfleisch MB, Neb R, Bozhko DA, Tiberkevich VS, Hillebrands B. Direct detection of magnon spin transport by the inverse spin Hall effect. Appl. Phys. Lett. 2012;100(8):082405. DOI: 10.1063/1.3689787.
  37. d’Allivy Kelly O, Anane A, Bernard R, Ben Youssef J, Hahn C, Molpeceres AH, Carretero C, Jacquet E, Deranlot C, Bortolotti P, Lebourgeois R, Mage JC, de Loubens G, Klein O, Cros V, Fert A. Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system. Appl. Phys. Lett. 2013;103(8):082408. DOI: 10.1063/1.4819157 .
  38. Balinsky M, Ranjbar M, Haidar M, Durrenfeld P, Dumas RK, Khartsev S, Slavin A, Akerman J. Spin pumping and the inverse spin Hall effect via magnetostatic surface spin-wave modes in YIG/Pt bilayers. IEEE Magn. Lett. 2015;6:3000604. DOI: 10.1109/LMAG.2015.2471276.
  39. Balinsky M, Chiang H, Gutierrez D, Khitun A. Spin wave interference detection via inverse spin Hall effect. Appl. Phys. Lett. 2021;118(24): 242402. DOI: 10.1063/5.0055402.
  40. Seleznev ME, Nikulin YV, Khivintsev YV, Vysotskii SL, Kozhevnikov AV, Sakharov VK, Dudko GM, Pavlov ES, Filimonov YA. Influence of three-magnon decays on electromotive force generation by magnetostatic surface waves in integral YIG – Pt structures. Izvestiya VUZ. Applied Nonlinear Dynamics. 2022;30(5):617–643. DOI: 10.18500/0869-6632-003008.
  41. Seleznev ME, Nikulin YV, Sakharov VK, Khivintsev YV, Kozhevnikov AV, Vysotskii SL, Filimonov YA. Influence of the resonant interaction of surface magnetostatic waves with exchange modes on the EMF generation in YIG/Pt structures. Technical Physics. 2022;92(13):2074–2077. DOI: 10.21883/TP.2022.13.52224.136-21.
  42. Seleznev ME, Nikulin YV, Khivintsev YV, Vysotskii SL, Kozhevnikov AV, Sakharov VK, Dudko GM, Filimonov YA. Influence of parametric instability on spin pumping by dipole-exchange magnetostatic surface waves in YIG–Pt structures. Izvestiya VUZ. Applied Nonlinear Dynamics. 2023;31(2):225–242. DOI: 10.18500/0869-6632-003032.
  43. Nikulin YV, Vysotskii SL,Seleznev ME, Kozhevnikov AV, Sakharov VK, Dudko GM, Khivintsev YV, Filimonov YA. Frequency dependence of the spin mixing conductance of YIG/Pt structures upon MSSW spin pumping. Phys. Solid State. 2023;65(6):926–931. DOI: 10.21883/PSS.2023.06. 56103.10H.
  44. Dudko GM, Kozhevnikov AV, Saharov VK, Stalmahov AV, Filimonov YA, Khivintsev YV. Calculation of Focusing Spin Wave Transducers Using the Method of Micromagnetic Simulation. Izvestiya of Saratov University. Physics. 2018;18(2):92–102. DOI: 10.18500/1817-3020-2018-18- 2-92-102.
  45. Damon R, Eshbach J. Magnetostatic modes of a ferromagnetic slab. J. Phys.Chem. Sol. 1961; (3–4):308–320. DOI: 10.1016/0022-3697(61)90041-5.
  46. Donahue MJ, Porter DG. OOMMF user’s guide, version 1.0. Interagency Report NIST 6376. National Institute of Standards and Technology, Gaithersburg, MD, 1999. DOI: 10.6028/ NIST.IR.6376.
Received: 
13.12.2023
Accepted: 
02.02.2024
Available online: 
10.04.2024
Published: 
31.05.2024