ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Yakhno V. G. Dynamic modes of the sensor signal consciousness in neuron­like models: ways to the «neuromorphic» intellect and problems. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 6, pp. 130-144. DOI: 10.18500/0869-6632-2011-19-6-130-144

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 159)
Language: 
Russian
Article type: 
Article
UDC: 
004.81

Dynamic modes of the sensor signal consciousness in neuron­like models: ways to the «neuromorphic» intellect and problems

Autors: 
Yakhno Vladimir Grigorevich, Institute of Applied Physics of the Russian Academy of Sciences
Abstract: 

Universal models of neuron-like type, from which the systems of transformation and identification of information signals are constructed in accordance with pre-determined goals are considered. The models of different levels in a model system are aimed at performing functional operations characteristic of live systems. The presented set of base models and the most obvious dynamic modes of their operation can adequately describe the features of conscious perception and response of live systems to various sensor signals. The models with biologically inspired architecture are used for the creation of technical devices (simulators) which permit one to reproduce the main features of the behavior of live systems. 

Reference: 
  1. Masters AV, Rabinovich MI, Tolkov VN, Yakhno VG. Investigation of modes of interaction of autowaves and autostructures in neuron-like environments. Collective dynamics of excitations and structure formation in biological tissues. Gorky: IAP AS USSR; 1988. P. 89 (in Russian).
  2. Bellustin NS, Kuznetsov SO, Nuidel IV, Yakhno VG. Neural networks with close nonlocal coupling for analyzing composite image. Neurocomputing. 1991;3(5–6):231–246. DOI: 10.1016/0925-2312(91)90005-V.
  3. Yakhno V.G., Bellustin N., Krasil’nikova I., Kuznetsov S., Nuidel I., Panfilov A., Perminov A., Shadrin A., Shevyrev A. Research system of decision making by composite image fragments using neuron-like algorithms. Radiophysics and Quantum Electronics. 1994;37(8):625–641. DOI: 10.1007/BF01038266.
  4. Yakhno VG. Models of neuron-like systems. Dynamic modes of information transformation. In: Gaponov-Grekhov AV, Nekorkin VI, editors. Nonlinear Waves - 2002. Nizhny Novgorod: IAP RAS; 2003. P. 90–114 (in Russian).
  5. Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 2010;90(3):1195–1268. DOI: 10.1152/physrev.00035.2008.
  6. An Overview of Neuromorphic Systems [Electronic resource]. Available from: http://www.neuromorphicblog.com/?p=28.
  7. Fopefolu Folowosele Neuromorphic Systems: Silicon neurons and neural arrays for emulating the nervous system [Electronic resource]. Neurdon. 2010. August, 12. Available from: http://www.neurdon.com/2010/08/12.
  8. Smith LS. Neuromorphic Systems: Past, Present and Future [Electronic resource]. Available from: http://www.google.ru/url?sa=t&rct=j&q=neuromorphic%20system&source=web& cd=4&ved=0CDcQFjAD&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc %2Fdownload%3Fdoi%3D10.1.1.187.6804%26rep%3Drep1%26type%3Dpdf&ei =vKLHTo_ZNorDswbNoo3-Bg&usg=AFQjCNFZQHM7iBmD5EG8vPapNyOOL 69cTQ&cad=rjt. 
  9. Chernavskij DS, Karp VP, Nikitin AP, Chernavskaja OD. The construction scheme of neuroprocessors able to realize the basic functions of thinking and scientific creativity. Izvestiya VUZ. Applied Nonlinear Dynamics. 2011;19(6):21–35 (in Russian). DOI: 10.18500/0869-6632-2011-19-6-21-35.
  10. Chernavskaja OD, Chernavskij DS, Karp VP, Nikitin AP. On the role of «pattern» and «symbol» concepts for simulation of the thinking process via neurocomputing. Izvestiya VUZ. Applied Nonlinear Dynamics. 2011;19(6):5–20 (in Russian). DOI: 10.18500/0869-6632-2011-19-6-5-20.
  11. Telnykh AA. Mathematical models of neuron-like environments for the development of systems for detecting and recognizing objects of specified classes. PhD thesis in Physics. Moscow: MIPT; 2009. 125 p. (in Russian).
  12. Zhdanov AA. Autonomous Artificial Intelligence. Moscow: Binom. Laboratoriya znanij; 2008. 359 p. (in Russian).
  13. Yakhno VG, Polevaya SA, Parin SB. The basic architecture of the system describing the neurobiological mechanisms of sensory signal awareness. In: Alexandrova YI, Sokolov VD, editors. Cognitive Research: Collection of Scientific Papers. Vol. 4. Moscoe: Publishing House «Institute of Psychology RAS»; 2010. P. 273–301 (in Russian).
  14. Stankevich LA. Modeling of thinking and cognitive multi-agent systems neurological systems. In: XI All-Union conference «Neuroinformatics – 2009»: Collection of Scientific Papers. Part 2. Moscow: MEPHI; 2009. P. 208 (in Russian).
  15. Yakhno VG. Dynamics of neuron-like models and processes of consciousness. In: VIII All-Russian scientific and technical conference «Neuroinformatics – 2006»: Lectures on Neuroinformatics. Moscow: MEPHI; 2006. P. 88–111 (in Russian).
  16. Berne E. Games People Play: The Psychology of Human Relationships. Penguin; 1964. 192 p.
  17. Parin SB, Yakhno VG, Tsverov AV, Polevaya SA. Psychophysiological and neurochemical mechanisms of stress and shock: experiment and model. Vestnik of Lobachevsky University of Nizhni Novgorod. 2007;(4):190–196 (in Russian).
  18. Parin S.B. The role of the endogenous opioid system in the formation of extreme conditions. Dr. Habil Thesis. Moscow; 2011. 491 p. (in Russian).
  19. Samsonovich AV. Metacognitive architectures as a new paradigm in brain and thinking modeling. In: XIII All-Russian Scientific and Technical Conference «Neuroinformatics-2011»: Lectures on Neuroinformatics. Moscow: NRNU MEPHI; 2010. 130 p. (in Russian).
  20. Strategic Public Movement Website «Russia 2045» [Electronic resource]. Available from: http://www.2045.ru.
  21. Kabakov BL. A Mouse - Virtual Mouse Animat, Simulator [Electronic resource]. Available from: http://www.animatlab.ru.
  22. Velichkovsky BM. Cognitive Science. Foundations of the Psychology of Cognition. In 2 volumes. Moscow: «Smysl»; 2006 (in Russian).
  23. Ivanitskii GR. 21st century: what is life from the perspective of physics? Phys. Usp. 2010;53(4):327–356. DOI: 10.3367/UFNe.0180.201004a.0337.
  24. Reutov VP, Schechter AN. How in the 20th century physicists, chemists and biologists answered the question: what is life? Phys. Usp. 2010;53(4):377–396. DOI: 10.3367/UFNe.0180.201004d.0393.
  25. Rabinovich MI, Muezzinoglu MK. Nonlinear dynamics of the brain: emotion and cognition. Phys. Usp. 2010;53(4):357–372. DOI: 10.3367/UFNe.0180.201004b.0371.
  26. Polevaya SA. Integrative principles of coding and recognition of sensory information. features of conscious perception of image and sound under stress condition. NSU Bulletin. Series: Psychology. 2008;2(2):106–117 (in Russian).
  27. Polevaya SA, Parin SB, Stromkova EG. Psychophysical mapping of human functional states. In: Barabanshchikova VA, editor. Experimental Psychology in Russia: Traditions and Prospects. Moscow: Publishing House "Institute of Psychology RAS"; 2010. P. 534–538 (in Russian).
  28. Dilts R. Changing Belief Systems With NLP. Meta Publications; 1990. 221 p.
  29. Maslow A. Motivation and Personality. Harper & Brothers; 1954. 411 p.
  30. Rajneesh BS. The Psychology of the Esoteric by Osho. Harper Collins; 1979.
  31. Sviyash A. Project “Humanity”: Success or Failure? Reflections on People and their Strange Behavior. Moscow: AST; 2006. 286 p. (in Russian).  
Received: 
08.12.2011
Accepted: 
08.12.2011
Published: 
29.02.2012
Short text (in English):
(downloads: 80)