For citation:
Starobinets I. M., Ugrinovskii V. A. A dynamical method for controlling chaos optimization. Izvestiya VUZ. Applied Nonlinear Dynamics, 1995, vol. 3, iss. 3, pp. 44-55.
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language:
Russian
Heading:
Article type:
Article
UDC:
517.9
A dynamical method for controlling chaos optimization
Autors:
Starobinets Igor Mikhailovich, Lobachevsky State University of Nizhny Novgorod
Ugrinovskii Valerii Aronovich, Federal state budgetary scientific institution "Scientific-research radiophysical Institute"
Abstract:
A control method is presented to direct a trajectory on a strange attractor towards a desirable unstable set by small parameters perturbations. The method is alternative to the classical Ott - Grebogi - Yorke control procedure. The proposed approach is based on the discrete and continuous maximum principles and optimizes the mean time to achieve control. The case of multidimensional control is investigated. The proposed method is tested both in discrete models and continuous systems.
Key words:
Acknowledgments:
The authors are grateful to M.I. Rabinovich and L.N. Korzinov for his interest in this work and numerous useful discussions.
The research described in this publication was made possible, in particular, thanks to the support of grant NP2300 from the International Science Foundation, the Russian government and a grant from the Russian Foundation for Basic Research (project 94-02-03263).
Reference:
- Ott E, Grebogi C, Yorke JA. Controlling chaos. Phys. Rev. Lett. 1990;64(11):1196-1199. DOI: 10.1103/PhysRevLett.64.1196.
- Singer J, Wang Y, Bau H. Controlling a chaotic systems. Phys. Rev. Lett. 1991;66(9):1123-1125. DOI: 10.1103/PhysRevLett.66.1123.
- Garfinkel А, Spano M, Ditto W, Weiss J. Controlling cardiac chaos. Science. 1992;257(5074):1230-1235. DOI: 10.1126/science.1519060.
- Roy R, Murphy T, Maier T, Gills Z, Hunt Е. Dynamical control of а chaotic laser: Experimental stabilization of а globally coupled system. Phys. Rev. Lett. 1992;68(9):1259-1262. DOI: 10.1103/PhysRevLett.68.1259.
- Petrov V, Gaspar V, Masere J, Showalter K. Controlling chaos in the Belousov- Zhabotinsky reaction. Nature. 1993;361:240-243. DOI: 10.1038/361240a0.
- Dressler U, Nitsche C. Controlling chaos using time delay coordinates. Phys. Rev. Lett. 1992;68(1):1-4. DOI: 10.1103/PhysRevLett.68.1.
- Aranson I, Levine H, Tsimring L. Controlling spatiotemporal chaos. Phys. Rev. Lett. 1994;72(16):2561-2564. DOI: 10.1103/PhysRevLett.72.2561.
- Sepulchre J, Babloyants А. Controlling chaos in а network of oscillators. Phys. Rev. E. 1993;48(2):945-950. DOI: 10.1103/physreve.48.945.
- Shinbrot T, Grebogi C, Ott E, Yorke JA. Using small perturbations to control chaos. Nature. 1993;363(6428):411-417. DOI: 10.1038/363411a0.
- Starobinets I, Pikovsky А. Multistep method for controlling chaos. Phys. Lett. А. 1993;181(2):149-152. DOI: 10.1016/0375-9601(93)90912-J.
- Starobinets I, Chugurin V. Optimization method for controlling chaos problems: theory and applications. Рrос. SPIE Photonic conf. Mobile Robots IX. Vol.2252. 1994, Boston, USA. P. 38.
- Kazimirov VI, Plotnikov VI, Starobinets IМ. An abstract scheme for the method of variations and necessary conditions for an extremum. Math. USSR Izvestiya. 1985;26(1):133-151. DOI: 10.1070/IM1986v026n01ABEH001135.
- Gaponov-Grekhov AV, Rabinovich MI, Starobinets IМ. The birth of multidimensional chaos in active grids. Sov. Phys. Doklady. 1984;279(3):596-601. (in Russian).
Received:
26.04.1995
Accepted:
10.11.1995
Published:
05.04.1996
Journal issue:
- 103 reads