ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Zakharov D. G. Dynamics of a small ensemble of Hindmarsh – Rose neurons under the action of a pulse train. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 1, pp. 100-113. DOI: 10.18500/0869-6632-2005-13-1-100-113

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 150)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

Dynamics of a small ensemble of Hindmarsh – Rose neurons under the action of a pulse train

Autors: 
Zakharov Denis Gennadevich, National Research University "Higher School of Economics"
Abstract: 

The influence of a pulse train on the dynamics of unidirectly nonlinearly coupled Hindmarsh-Rose neurons is investigated. The synchronization of the spike-generating neuron by the periodical pulse train is studied. Information and dynamical aspects of burst generation under the action of a pulse train with irregular interpulse intervals are analyzed. It is shown that the backward burst-to-spike transformation by the neuron at rest is possible. Dynamic unreliability during the spike-to-burst transformation is explained qualitatively.

Key words: 
Reference: 
  1. Zakharov DG. Influence of inhibitory pulse train on a pacemaker Hindmarsh- Rose neuron. In: Proceedings of the International Symposium «Topical Problems of Nonlinear Wave Physics» (NWP-2003). Nizhny Novgorod; 2003. P. 133–134.
  2. Skonzhenko LA, Krasichkov LV. Pulse propagation in chain of elements with neuronlike dynamics. Bulletin of the Russian Academy of Sciences: Physics. 2003;67(12):1697–1700 (in Russian).
  3. Kazantsev VB, Nekorkin VI. Dynamic of oscillatory neurons. Information aspects. In: Gaponov-Grekhov AV, Nekorkin VI, editor. «Nonlinear Waves 2002». N. Novgorod: IPF RAN; 2003. P. 1–31 (in Russian).
  4. Pinto RD et al. Synchronous behavior of two coupled electronic neurons. Phys. Rev. E. 2000;62(2):2644–2656. DOI: 10.1103/physreve.62.2644.
  5. Binczak S, Kazantsev VB, Nekorkin VI, and Bilbault JM. Experimental study of bifurcations in a modified FitzHugh-Nagumo cell. Electronic Letters. 2003;39(13):961–962. DOI: 10.1049/el:20030657.
  6. Borisyuk GN, Borisyuk RM, Kazanovich YB, Ivanitskii GR. Models of neural dynamics in brain information processing — the developments of 'the decade. Phys. Usp. 2002;45(10):1073–1095. DOI: 10.1070/PU2002v045n10ABEH001143.
  7. Eguia MC, Rabinovich MI, and Abarbanel HDI. Information transmission and recovery in neural communications channels. Phys. Rev. E. 2000;62(5):7111–7122. DOI: 10.1103/PhysRevE.62.7111.
  8. Wang XJ. Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle. Physica D. 1993;62(1–4):263–274. DOI: 10.1016/0167-2789(93)90286-A.
  9. Destexhe A, Mainen ZF, and Sejnowski TJ. An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Computation. 1994;6(1):14–18. DOI: 10.1162/neco.1994.6.1.14.
Received: 
24.09.2004
Accepted: 
24.06.2005
Published: 
30.09.2005
Short text (in English):
(downloads: 78)