ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kochkurov L. A., Balakin M. I. Dynamics of two nonlinearly coupled nonidentical Lang–Kobayshi oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 3, pp. 29-36. DOI: 10.18500/0869-6632-2013-21-3-29-36

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 108)
Language: 
Russian
Article type: 
Article
UDC: 
535.33:621.373.8; 537.86

Dynamics of two nonlinearly coupled nonidentical Lang–Kobayshi oscillators

Autors: 
Kochkurov Leonid Alekseevich, Yuri Gagarin State Technical University of Saratov
Balakin Maksim Igorevich, Yuri Gagarin State Technical University of Saratov
Abstract: 

One-parameter study of system of two nonlinearly coupled nonidentical Lang– Kobayshi oscillators is presented. The time delay influence on oscillation regimes in the system is studied. The posibility of periodic and quasiperiodic oscillations is shown. Variation of delay time leads to bifurcations and an alternation of periodic and quasiperiodic oscillations. Quasiperiodic oscillations are excited as a result of Neimark–Sacker bifurcation.

Reference: 
  1. Van Tartwijk GHM, Lenstra D. Semiconductor lasers with optical injection and feedback. J. Opt. B. Quantum Semiclassical Opt. 1995;7:87–143. DOI:10.1088/1355-5111/7/2/003.
  2. Van Tartwijk GHM, Agrawal GP. Laser instabilities: A modern perspective. Prog. Quantum Electron. 1998;22:43–122. DOI:10.1016/S0079-6727(98)00008-1.
  3. Lang R, Kobayshi K. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum. Electron. 1980;16(3):347–355. DOI:10.1109/JQE.1980.1070479.
  4. Alsing PM, Kovanis V, Gavrielides A, Erneux T. Mechanism for period doubling in a semiconductor laser subject to optical injection. Phys. Rev. A. 1996;53(6):4429–4380. DOI: 10.1103/physreva.53.4372.
  5. Flunkert V, D’Huys O, Danckaert J, Fischer I, Scholl E. Bubbling in delay-coupled lasers. Phys. Rev. E. 2009;79(6):065201(R). DOI: 10.1103/PhysRevE.79.065201.
  6. Masoller C. Noise-induced resonance in delayed feedback systems. Phys. Rev. Lett. 2002;88(3):034102. DOI: 10.1103/PhysRevLett.88.034102.
  7. Tronciu VZ, Wunsche H-J, Wolfrum M, Radziunas M. Semiconductor laser under resonant feedback from a Fabry–Perot resonator: Stability of continuous-wave operation. Phys. Rev. E. 2006;73(4):046205. DOI:10.1103/PhysRevE.73.046205.
  8. Fiedler B, Yanchuk S, Flunkert V, Hovel P, Wunsche H-J, Scholl E. Delaystabilization of rotating waves near fold bifurcation and application to all-optical control of a semiconductor laser. Phys. Rev. E. 2008;77(6):066207. DOI:10.1103/PhysRevE.77.066207.
  9. Tobbens A, Parlitz U. Dynamics of semiconductor lasers with external multicavities. Phys. Rev. E. 2008;78(1):016210. DOI: 10.1103/PhysRevE.78.016210.
  10. Haegeman B, Engelborghs K, Roose D, Pieroux D, Erneux T. Stability and rupture of bifurcation bridges in semiconductor lasers subject to optical feedback. Phys. Rev. E. 2002;66(4):046216. DOI: 10.1103/PhysRevE.66.046216.
  11. Yanchuck S, Wolfrum M. A multiple time scale approach to the stability of external cavity modes in the Lang–Kobayshi system using the limit of large delay. J. Applied Dynamical Systems. 2010;9(2):519–535. DOI:10.1137/090751335.
  12. Krauskopf B, van Tartwijk GHM, Gray GR. Symmetry properties of lasers subject to optical feedback. Opt. Commun. 2000;177(1-6):347–353. DOI:10.1016/S0030-4018(00)00574-5.
  13. Heil T, Fischer T, Elsasser W, Krauskopf B, Green K, Gavrielides A. Delay dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios and mechanisms. Phys. Rev. E. 2003;67(6):066214. DOI: 10.1103/PhysRevE.67.066214.
  14. Wolfrum M, Turaev D. Instabilities of lasers with moderately delayed optical feedback. Opt. Commun. 2002;212(1-3):127–138. DOI:10.1016/S0030-4018(02)01824-2.
  15. Kochkurov L, Balakin M, Melnikov L, Astakhov V. Numerical modeling of terahertz generation via difference-frequency mixing in two-color laser. Proc. SPIE. 2013;8699:1–12. DOI:10.1117/12.2021065.
  16. Engelborghs K, Luzyanina T, Roose D. Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Softw. 2002;28(1):1–21. DOI:10.1145/513001.513002.
  17. Flunkert V. Delay-Coupled Complex Systems and Applications to Lasers. Berlin: Springer Theses; 2011. 180 p.
Received: 
28.02.2013
Accepted: 
10.07.2013
Published: 
31.10.2013
Short text (in English):
(downloads: 76)