ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Leonov G. A. Effective criteria for the existence of homoclinic bifurcations in dissipative systems. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 3, pp. 20-26. DOI: 10.18500/0869-6632-2005-13-3-20-26

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 142)
Article type: 

Effective criteria for the existence of homoclinic bifurcations in dissipative systems

Leonov Gennadij Alekseevich, Saint Petersburg State University

The path bifurcation problem is formulated. The application of it for the classical result of F. Tricomi on the existence of homoclinic bifurcations in a dissipative pendulum system is discussed. The survey of results concerning to the solving of the path homoclinic bifurcation problems for Lorenz system is given.

Key words: 
  1. Tricomi F. Integrazione di un'equazione differenziale presentatasi in elettrotecnica. Ann. di Matem. Pura Ed Appl. 1933;2(1):1–20 (in Italian).
  2. Andronov AA, Vitt AA, Khaikin SE. Theory of Oscillators. Pergamon; 1966. 815 p. DOI: 10.1016/C2013-0-06631-5.
  3. Barbashin EA, Tabueva VA. Dynamical Systems with Cylindrical Phase Space. Moscow: Nauka; 1969. 300 p. (in Russian).
  4. Bautin NN. Qualitative study of a certain equation of the theory of phase automatic frequency control. Journal of Applied Mathematics and Mechanics. 1970;34(5):812–821. DOI: 10.1016/0021-8928(70)90063-8.
  5. Belykh VN, Nekorkin VI. Qualitative investigation of a system of three differential equations in the theory of phase synchronization. Journal of Applied Mathematics and Mechanics. 1975;39(4):615–622. DOI: 10.1016/0021-8928(75)90062-3.
  6. Belyustina LN. On one equation from the theory of electrical machines. In: Collection of Memory of A.A. Andronov. Moscow: Publishing House of the Academy of Sciences of the USSR; 1955. P. 173–186 (in Russian).
  7. Belyustina LN. Investigation of a nonlinear phase-locked loop system. Radiophys. Quantum Electron. 1959;2(2):277–291 (in Russian).
  8. Belyustina LN. On the capture band and the numerical study of point mappings in some synchronization problems. In: System Dynamics. No. 11. Gorky: GSU; 1976. P. 18 (in Russian).
  9. Belyustina LN, Brykov VV, Kiveleva KG, Shalfeev VD. On the magnitude of the locking band of a phase-shift automatic frequency control system with a proportionally integrating filter. Radiophys. Quantum Electron. 1970;13(4)437–440. DOI: 10.1007/BF01030651.
  10. Belyustina LN, Belykh VN. Qualitative study of a dynamic system on a cylinder. Differential Equations. 1973;9(3):403–415 (in Russian).
  11. Gubar’ NA. Investigation of a piecewise linear dynamical system with three parameters. Journal of Applied Mathematics and Mechanics. 1961;25(6):1519–1535. DOI: 10.1016/0021-8928(62)90132-6.
  12. Amerio L. Studio asimptotika del moto un punto su una chiusa per azione diforze independenti dal tempo. Ann. R. Scuola Norm. Sup. Piza. 1950;3(3):17–57 (in Italian).
  13. Amerio L. Determinazione della condizioni di stabilita per gli integrali di un’equazione interessante l’electrotecnica. Ann. di Matem. Pura Ed Appl. 1949;30(4):75–90 (in Italian).
  14. Hayes WD. On the equation for a damped pendulum under constant torque. Z. Ang. Math. Phys. 1953;4(5):398–401. DOI: 10.1007/BF02074983.
  15. Zeifert G. On the existence of certain solutions of nonlinear differential equations. Z. Ang. Math. Phys. 1952;3(6):468–471. DOI: 10.1007/BF02025575.
  16. Zeifert G. On stability questions for pendulum-like equations. Z. Ang. Math. Phys. 1956;7(3):238–247. DOI: 10.1007/BF02044469.
  17. Shakhgildyan VV, Belyustina LN. Phase Synchronization Systems. Moscow: Radio I Svyaz; 1982. 288 p. (in Russian).
  18. Shakhgildyan VV, Lyakhovkin AA. Phase Locking Systems. Moscow: Svyaz; 1972. 446 p. (in Russian).
  19. Yanko-Trinitsky AA. A New Method for Analyzing the Operation of Synchronous Motors Under Abruptly Varying Loads. Moscow–Leningrad: Gosenergoizdat; 1958. 103 p. (in Russian).
  20. Gupta S. Phase-locked frequency control. Proceedings of the Institute of Electrical Engineering and Radio Engineering. 1975;63(2):50 (in Russian).
  21. Stocker JJ. Nonlinear Vibrations in Mechanical and Electrical Systems. New York: Interscience; 1950. 273 p.
  22. Viterbi AJ. Principles of Coherent Communications. New York: McGraw-Hill; 1966. 321 p.
  23. Lindsey WC. Synchronization Systems in Communication and Control. New York: Prentice-Hall; 1972. 695 p.
  24. Belykh VN. On the bifurcation of the separatrices of the saddle of the Lorentz system. Differential Equations. 1984;20(10):1666–1674 (in Russian).
  25. Leonov GA, Reitman V. Attraktoreingrenzung für nichtlineare Systeme. Leipzig: Teubner; 1987. 196 p. DOI: 10.1007/978-3-322-91271-8.
  26. Leonov GA. On the estimation of the bifurcation parameters of the separatrix loop of the Lorentz system. Differential Equations. 1988;24(6):972–977 (in Russian).
  27. Leonov GA. On estimates of the bifurcation values of the parameters of a Lorentz system. Russian Math. Surveys. 1988;43(3):216–217. DOI: 10.1070/RM1988v043n03ABEH001766.
  28. Leonov GA. On the existence of homoclinic trajectories in the Lorentz system. Bulletin of St. Petersburg University. Mathematics, Mechanics, Astronomy. 1999;(1):13 (in Russian).
  29. Hastings SP, Troy WC. A shooting approach to chaos in the Lorenz equations. Journal of Differential Equations. 1996;127(1):41–53. DOI: 10.1006/jdeq.1996.0060.
  30. Chen X. Lorenz equations. Pt. 1. Existence and nonexistence of homoclinic orbits. SIAM J. Math. Analysis. 1966;27(4):1057–1069. DOI: 10.1137/S0036141094264414.
  31. Leonov GA. Bounds for attractors and the existence of homoclinic orbits in the lorenz system. Journal of Applied Mathematics and Mechanics. 2001;65(1):19–32. DOI: 10.1016/S0021-8928(01)00004-1.
  32. Leonov GA, Ponomarenko DV, Smirnova VB. Frequency-Domain Methods for Nonlinear Analysis. Theory and Applications. Singapore: World Scientific; 1996. 512 p. DOI: 10.1142/2638.
Short text (in English):
(downloads: 72)