ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Nefedov I. S. Electromagnetic waves propagation through the layered fractal structures. Izvestiya VUZ. Applied Nonlinear Dynamics, 1995, vol. 3, iss. 4, pp. 97-105.

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
535.3

Electromagnetic waves propagation through the layered fractal structures

Autors: 
Nefedov Igor Sergeevich, Saratov State University
Abstract: 

Electromagnetic waves propagation through layered structures, which are constructed using the finite number N of fractal construction steps is studied. (These structures are called the pre-fractals of N-th level). We consider three layered pre-fractal kinds: Cantor dust, Cantor-like fractal obtained by convolution precedure (generalized Cantor dust) and fat fractal, described by Eykholt and Umberger. Transfer matrix method is exploited to solve the problem of reflection of electromagnetic wave which is obliquely incident onto the fractal structure. Angular reflection characteristics are analysed. The transfer mairix of the pre-fractal is constructed by means of recursive technique.

Key words: 
Reference: 
  1. Jaggard DL, Sun X. Reflection from fractal multilayers. Optics Letters. 1990;15(24):1428-1430. DOI: 10.1364/ol.15.001428.
  2. Konotop VV, Yordanov ОI, Yurkevich IV. Wave Transmission through a one-Dimensional Cantor-like Fractal Medium. Europhys. Lett. 1990;12(6):481-485. DOI: 10.1209/0295-5075/12/6/001.
  3. Donchenko VA, Kistenev YuV, Noskov MD, Shapovalov AV. Interaction of electromagnetic waves with fractal structures. Rus. Phys. J. 1993;36(10):76-87.
  4. Kistenev YuV, Shapovalov АV. Absorption properties of resonant fractal media. Optics and Spectroscopy. 1995;78(2):260-265.
  5. Bulgakov SA, Konotop VV. Pecularities of wave scattering by fat fractals. Phys. Rev. А. 1992;46(12):8024-8027. DOI: 10.1103/PhysRevA.46.8024.
  6. Bertolotti M, Masciulli P, Sibilia С. Spectral transmission properties of a self-similar optical Fabry-Perot resonator. Opt. Lett. 1994;19(11):777-779. DOI: 10.1364/ol.19.000777.
  7. Gellerman W, Kohmoto M, Sutherland B, Taylor PC. Localization of light waves in Fibonacci dielectric multilayers. Phys. Rev. Lett. 1994;72(5):633-636. DOI: 10.1103/PhysRevLett.72.633.
  8. Eykholt R, Umberger DK. Relating the various scaling exponents used to characterictize fat fractals in nonlinear dynamical systems. Physica D. 1988;30(1-2):43-60. DOI: 10.1016/0167-2789(88)90097-8.
  9. Konotop VV. Transmission coefficient of a fractal layer. Phys. Rev. A. 1991;44(2):1352-1357. DOI: 10.1103/PhysRevA.44.1352.
  10. Konotop VV, Bulgakov SA. Two-scale method in the theory of scattering by fractal structures: One-dimensional regular problems. Phys. Rev. А. 1992;45(8):5994-6007. DOI: 10.1103/physreva.45.5994.
  11. Feder J. Fractals. N.Y.: Springer; 1988. 284 p. DOI: 10.1007/978-1-4899-2124-6.
  12. Bale HD, Schmidt РМ. Small-Angle X-Ray-Scattering Investigation of Submicroscopic Porosity with Fractal Properties. Phys. Rev. Lett. 1984;53(6):596-599. DOI: 10.1103/PhysRevLett.53.596.
  13. Tichener JB, Willis JR. The reflection of electromagnetic waves from stratified anisotropic media. IEEE Trans. Ant. Prop. 1991;39(1):35-39. DOI: 10.1109/8.64432.
  14. Felsen LB, Marcuvitz N. Radiation and Scattering of Waves. N.Y.: Wiley; 1994. 924 p.
Received: 
13.03.1995
Accepted: 
24.01.1996
Published: 
13.10.1996