For citation:
Kozlenko E. L. Entropy of filtered chaotic signals. Izvestiya VUZ. Applied Nonlinear Dynamics, 1998, vol. 6, iss. 6, pp. 73-81. DOI: 10.18500/0869-6632-1998-6-6-73-81
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language:
Russian
Heading:
Article type:
Article
UDC:
537.86
Entropy of filtered chaotic signals
Autors:
Kozlenko Egor Lvovich, Saratov State University
Abstract:
Chaotic oscillations being passed through linear filters are distorted that reflects in the estimates of their characteristics. One of such characteristics is entropy — usually used as a quantitative comlexity measure of different processes. The present paper is focused on the problems of entropy estimation of chaotic time series, passed through linear filters. The systems, consisting of generators of chaotic oscillations and linear first—order and high—order filters have been investigated by means of computer simulation.
Key words:
Reference:
- Takens F. Detecting strange attractors in turbulence. In: Rand D, Young LS, editors. Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics. Vol 898. Berlin: Springer, 1981. P. 366-381. DOI: 10.1007/BFb0091924.
- Badii R, Politi A. Strange attractors: Estimating the complexity of chaotic signals. In: Abraham NB, Arecchi FT, Lugiato LA, editors. Instabilities and Chaos in Quantum Optics II. NATO ASI Series. Vol 177. Boston: Springer; 1988. P. 335-362. DOI: 10.1007/978-1-4899-2548-0_22.
- Badii R, Broggi G, Derighetti B, Ravani M, Ciliberto S. Dimension increase in filtered chaotic signals. Phys. Rev. Lett. 1988;60(11):979-982. DOI: 10.1103/PhysRevLett.60.979.
- Mitschke F, Moller M, Lange W. Measuring filtered chaotic signals. Phys. Rev. A. 1988;37(11):4518-4521. DOI: 10.1103/physreva.37.4518.
- Stratonovich RL. Theory of Information and its Value. Cham: Springer; 2020. 419 p. DOI: 10.1007/978-3-030-22833-0.
- Kipchatov AA, Krasichkov LV. Superfractalization of a chaotic attractor in linear filtration. Tech. Phys. Lett. 1995;21(4):1-6. (in Russian).
- Kipchatov AA, Kozlenko EL. Unbounded increase in the dimension of chaotic attractors in linear filtering. Tech. Phys. Lett. 1997;23(4):254-256. DOI: 10.1134/1.1261832.
- Kipchatov AA, Kozlenko EL. The new fractal structure оf chaotic attractors arising under linear filtering. In: Proc. 5th Int. Specialist Workshop Nonlinear Dynamics оf Electronic Systems. 1997. P. 394.
- Kipchatov AA. Quantitative Assessment of the Complexity of Oscillations and Formation of Test Chaotic Signals. PhD Thesis. Saratov: Saratov State University; 1996. 204 p. (in Russian).
- Grassberger Р, Procaccia I. Characterization of strange attractors. Phys. Rev. Lett. 1983;50(5):346-349. DOI: 10.1103/PhysRevLett.50.346.
- Kipchatov AA. Estimation of the correlation dimension of attractors restored from finite accuracy and length data. Tech. Phys. Lett. 1995;21(15):90-95. (in Russian).
- Ebeling W, Nicolis G. Entropy оf symbolic sequences: the role оf correlations. Europhys. Lett. 1991;14(3):191-196. DOI: 10.1209/0295-5075/14/3/001.
- Rossler ОЕ. An equation for continuous chaos. Phys. Lett. А. 1976;57(5):397-398. DOI: 10.1016/0375-9601(76)90101-8.
- Henon М. A two dimensional mapping with а strange attractor. Comm. Math. Phys. 1976;50:69-77. DOI: 10.1007/BF01608556.
Received:
25.09.1998
Accepted:
23.02.1999
Published:
10.04.1999
Journal issue:
- 125 reads