ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Astahov S. V., Bezruchko B. P., Seleznev E. P., Smirnov D. A. Evolution of basins of attraction for coupled period doubling systems. Izvestiya VUZ. Applied Nonlinear Dynamics, 1997, vol. 5, iss. 2, pp. 87-99. DOI: 10.18500/0869-6632-1997-5-2-87-99

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
530.18

Evolution of basins of attraction for coupled period doubling systems

Autors: 
Astahov Sergej Vladimirovich, Saratov State University
Bezruchko Boris Petrovich, Saratov State University
Seleznev Evgeny Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Smirnov Dmitrij Alekseevich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

Peculiarities of basin structure for dissipatively coupled period doubling systems are investigated both experimentally (RL—diode circuits) and numerically (system of quadratic maps). Characteristic types of basin evolution are recognized; in particular, two possible variants of basin fractalization are found.

Key words: 
Acknowledgments: 
The work was supported by the RFBR, grant N 96-02-16753.
Reference: 
  1. Grebogi C, Ott E, Yorke JA. Fractal basin boundaries, long—lived chaotic trancients and unstable—unstable pair bifurcations. Phys. Rev. Lett. 1983;50(13):935-938. DOI: 10.1103/PhysRevLett.50.935.
  2. Grebogi C, Ott E, Yorke JA. Metamorphose of basin boundaries in nonlinear dynamical systems. Phys. Rev. Lett. 1996;56(10):1011-1014. DOI: 10.1103/PhysRevLett.56.1011.
  3. Astakhov VV, Bezruchko BP, Erastova EN, Seleznev EP. Types of oscillations and their evolution in dissipatively related Feigenbaum systems. Tech. Phys. 1990;60(10):19-26. (in Russian).
  4. Mira C, Fournier—Prunaret D, Gardini L, Kawakami H, Cathala JC. Basin bifurcations of two-dimensional noninvertible maps: fractalization of basins. Int. J. Bifurc. Chaos. 1994;4(2):343-381. DOI: 10.1142/S0218127494000241.
  5. Mira C. Some results on basins generated by two-dimensional noninertible maps. Izvestiya VUZ. Applied Nonlinear Dynamics. 1996;4(2):40-71.
  6. Linsay PS. Period doubling and chaotic behavior in а driven anharmonic oscillator. Phys. Rev. Lett. 1981;47(19):1349-1352. DOI: 10.1103/PhysRevLett.47.1349.
  7. Buskirk R, Jeffries C. Observation of chaotic dynamics of coupled nonlinear oscillators. Phys. Rev. A. 1985;31(5):3332-3357. DOI: 10.1103/PhysRevA.31.3332.
  8. Kuznetsov SP. Universality and scaling in the behavior of coupled Feigenbaum systems. Radiophys. Quantum Electron. 1985;28(8):681-695. DOI: 10.1007/BF01035195.
  9. Astakhov VV, Bezruchko BP, Kuznetsov SP, Seleznev ЕP. Features of the occurrence of quasi-periodic movements in the system of dissipatively connected nonlinear oscillators under external periodic influence. Tech. Phys. Lett. 1988;14(1):37-41. (in Russian).
  10. Prokhorov MD. Types of oscillations of dissipatively related systems with doubling of the period with a strong bond. Izvestiya VUZ. Applied Nonlinear Dynamics. 1996;4(4,5):99-107.  (in Russian).
  11. Fujisaka H, Yamada Т. Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 1983;69(1):32-47. DOI: 10.1143/ptp.69.32.
  12. Picovsky AS. On the interaction of strange attractors. Z. Physik B. - Condensed Matter. 1984;55:149-154. DOI: doi.org/10.1007/BF01420567.
  13. Afraimovich VS, Verichev NN, Rabinovich МI. Stochastic synchronization of oscillation in dissipative systems. Radiophys. Quantum Electron. 1986;29(9):795-803. DOI: 10.1007/BF01034476.
  14. Anishchenko VS, Aranson NS, Postnov DE, Rabinovich MI. Spatial synchronization and bifurcation of chaos in the chain of connected generators. Soviet Phys. Doklady. 1986;286(5):1120-1124.
  15. Astakhov VV, Bezruchko BP, Ponomarenko VI, Seleznev ЕP. Quasi-homogeneous stochastic movements and their destruction in the system of bound nonlinear oscillators. Radiophys. Quantum Electron. 1988;31(5):627-630. (in Russian).
Received: 
25.10.1996
Accepted: 
25.06.1997
Published: 
17.07.1997