ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Landa P. S. Excitation of chaotic and stochastic oscillations in different systems. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 1, pp. 3-11. DOI: 10.18500/0869-6632-2010-18-1-3-11

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 227)
Article type: 

Excitation of chaotic and stochastic oscillations in different systems

Landa Polina Solomonovna, Lomonosov Moscow State University

A possible response of both lumped and distributed systems to weak random disturbances of forced character (additive) and the disturbances leading to parametric excitation of oscillations (multiplicative) is presented. It is shown that multiplicative disturbances of a system may cause radical change in its behavior, similar to that occurs in thermodynamically equilibrium systems after second kind phase transitions.

  1. Neimark YuI, Landa PS. Stochastic and Chaotic Oscillations. Moscow: Nauka; 1987. (in Russian).
  2. Neimark YuI. Mathematical models in natural science and technology. Nizhny Novgorod: Publishing House of Nizhny Novgorod University; 2004. (in Russian).
  3. Stratonovich RL, Romanovskii YuM. Parametric representation of linear and nonlinear oscillatory systems by a random force. Nauchn. Dokl. Vyssh. Shkoly Fiz. Mat. Nauki. 1958;3:221–224 (in Russian).
  4. Stratonovich RL. Selected Problems of Fluctuation Theory in Radio Engineering. Moscow: Sov. radio; 1961. (in Russian).
  5. Landau LD, Lifshitz EM. Statistical physics. Moscow: Nauka; 1964. (in Russian).
  6. Landa PS. Turbulence in nonclosed fluid flows as a noise-induced phase transition. Europhys. Lett. 1996;36(6):401–406. DOI: 10.1209/epl/i1996-00242-8.
  7. Landa PS. Onset of turbulence in open liquid flows as a nonequilibrium noise-induced second-order phase transition. Technical Physics. 1998;43(1):27–34. DOI: 10.1134/1.1258930.
  8. Landa PS, Zaikin AA. Nonequilibrium noise-induced phase transitions in simple systems. J. Exp. Theor. Phys. 1997;84:197–208. DOI: 10.1134/1.558137.
  9. Landa PS, Zaikin AA. Noise-induced phase transitions in nonlinear oscillators. AIP Conference Proceedings 465 (Computing Anticipatory Systems, CASYS’98, Liege, Belgium). 1998:419–433.
  10. Landa PS. Regular and Chaotic Oscillations. Berlin-Heidelberg: Springer-Verlag; 2001.
  11. Landa PS, Rabinovitch A. Exhibition of intrinsic properties of certain systems in response to external disturbances. Phys. Rev. E. 2000;61(2):1829–1838. DOI: 10.1103/physreve.61.1829.
  12. Landa PS. Self-Oscillation in Systems with Finite Number of Degress of Freedom. Moscow: Nauka; 1980. (in Russian)
  13. Landa PS, Zaikin AA. Noise-induced phase transitions in a pendulum with a randomly vibrating suspension axis. Phys. Rev. E. 1996;54(4):3535–3544. DOI: 10.1103/physreve.54.3535.
  14. Landa PS. Nonlinear Oscillations and Waves. Moscow: Fizmatlit; 1997. (in Russian). 
  15. Landa PS, McClintock PVE. Development of turbulence in subsonic submerged jets. Phys. Rep. 2004;397:1–62. DOI: 10.1016/j.physrep.2004.03.004.
  16. Landa PS, Trubetskov DI, Gusev VA. Delusions versus reality in some physics problems: theory and experiment.  Phys. Usp. 2009;52(3):235–255.
Short text (in English):
(downloads: 105)