ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Cite this article as:

Sharaevskaja A. J. Features of formation of band gaps in coupled structures based on magnonic crystals. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 6, pp. 59-68. DOI: https://doi.org/10.18500/0869-6632-2014-22-6-59-68

Language: 
Russian

Features of formation of band gaps in coupled structures based on magnonic crystals

Autors: 
Sharaevskaja Anna Jurevna, Saratov State University
Abstract: 

There are introduced ferromagnetic periodic structures consist of two coupled magnonic crystals and related magnonic and crystal film, separated by a dielectric layer. The dispersion equation made for magnetostatic waves, that propagate in such structures and identified main features of formation band gaps and a comparison with a periodic structure of one magnonic crystal was made. It was shown that connection can effectively manage characteristics of band gaps in spectrum of magnetostatic waves, and theirs width and position in spectrum. The results can be realize for creating on basis of magnonic crystals frequency selective devices for selectively processing information signals with microwave range.

DOI: 
10.18500/0869-6632-2014-22-6-59-68
References: 

1. Кившарь Ю.С., Агравал Г.П. Оптические солитоны. От волоконных световодов к фотонным кристаллам. М. : Физматлит, 2005. 648 с. 2. Гуляев Ю.В., Никитов С.А., Животовский Л.В. и др. Ферромагнитные пленки с периодическими структурами c магнонной запрещённой зоной – магнонные кристаллы // Письма в ЖЭТФ. 2003. Т. 77, No 10. С. 670. 3. Nikitov S.A.,Tailhadesand Ph., Tsai C.S. Spin waves in periodic magnetic structures –magnonic crystals // Journal of Magnetism and Magnetic Materials, 2001. Vol. 236, No 3. С. 320. 4. Chumak A.V., Serga A.A., Hillebrands B. and Kostylev M.P. Scattering of backward spin waves in a one-dimensional magnonic crystal // Applied Physics Letters. 2008. Vol. 93. 022508. 5. Kruglyak V.V., Demokritov S.O. and Grundler D. Magnonics // Journal of Physics D. 2010. Vol. 43. 264001. 6. Serga A.A., Chumak A.V. and Hillebrands B. YIG magnonics // J. Phys. D: Appl. Phys. 2010. Vol. 43. Р. 264002. 7. Kashyap R. Fibe. Bragg Gratings. San Diego, USA: Acad. Рress., 1999. 8. Sang-Koog Kim, a Ki-Suk Lee, and Dong-Soo Han. A gigahertz-range spin-wave filter composed of width-modulated nanostripmagnonic-crystal waveguides // Appl. Phys. Lett. 2009. Vol. 95. 082507. 9. Ustinov A.B., Drozdovskii A.V., Kalinikos B.A. Multifunctional nonlinear magnonic devices for microwave signal processing // Applied physics letters. 2010. Vol. 96. P. 142513. 10. Grishin S.V., Beginin E.N., Morozova M.A., Sharaevskii Yu.P., Nikitov S.A. Self-generation of dissipative solitons in magnonic quasicrystal active ring resonator // J. Appl. Phys. 2014.Vol. 115, No. 5. 053908, Feb. 2. 11. Arikan M., Au. Y., Vasile G., Ingvarsson S. and Kruglyak V.V. Broadband injection and scattering of spin waves in lossy width-modulated magnonic crystal waveguides // J. Phys. D: Appl. Phys. 2013. Vol. 46. 135003. 12. Ciubotaru F., Chumak A.V., Grigoryeva N.Yu., Serga A.A. and Hillebrands B. Magnonic band gap design by the edge modulation of micro-sized waveguides// J. Phys. D: Appl. Phys. 2012. Vol. 45. 255002. 13. Beginin E.N., Filimonov Yu.A., Pavlov E.S., Vysotskii S.L., and Nikitov S.A. Bragg resonances of magnetostatic surface spin waves in a layered structure: Magnonic crystal-dielectric-metal // Applied Physics Letters .2012. Vol. 100, 252412. 14. Chumak A.V., Neumann T., Serga A.A., Hillebrands B. and Kostylev M.P. A current-controlled, dynamic magnonic crystal // J. Phys. D: Appl. Phys. 2009. Vol. 42. 205005. 15. Анненков А.Ю., Герус C.B., Ковалев С.И. Объемные и поверхностно-объемные магнитостатические волны в волноводах, создаваемых ступенчатым полем подмагничивания / ЖТФ. 2004. Т. 74, No 2. 16. Costa C.H.O. and Vasconcelos M.S. Band gaps and transmission spectra in generalized Fibonacci ?(p, q) one-dimensional magnonicquasicrystals // J. Phys. Condens. Matter. 2013. Vol. 25. 286002. 17. FilimonovYu.Yu., Pavlov E., Vystostkii S. and Nikitov S. Magnetostatic surface wave propagation in a one-dimensional magnonic crystal with broken translational symmetry // Appl. Phys. Lett. 2012. Vol. 101. 242408. 18. Qi Wang, Huaiwu Zhang, Xiaoli Tang, Hua Su, FeimingBai, Yulan Jing and Zhiyong Zhong. Effects of symmetry reduction on magnon band gaps in two-dimensional magnonic crystals // J. Phys. D: Appl. Phys. 2014. 19. Sheshukova S.E., Morozova M.A., Beginin E.N., Sharaevskii Yu.P., Nikitov S.A. Formation of gap solitons in a finite magnonic crystal // Phys. Wave Phenom. 2013. Vol. 21, No 4. P. 304. 20. Louisell W.H. Coupled mode and parametric electronics. John Wiley, New York, 1960. 21. Вашковский А.В., Стальмахов В.С., Шараевский Ю.П. Магнитостатические волны в электронике СВЧ. Саратов: СГУ. 1993. 22. Morozova M.A., Sharaevskii Yu.P., Sheshukova S.E., Zhamanova M.K. Investigation of self-action effects of magnetostatic waves in ferromagnetic structures in terms of the system of Schrodinger equations with coherent or incoherent coupling // Physics  ? of the Solid State. 2012. Vol. 54, No 8. P. 1575. 23. Морозова М.А., Шараевская А.Ю. Дисперсионные характеристики магнитостатических волн в связанных магнонных кристаллах // Гетеромагнитная микроэлектроника. 2013. Вып. 15. С. 82. 24. Мorozova M.A., Grishin S.V., Sadovnikov A.V., Sharaevskii Yu P. and Nikitov S.A. Magnonic bandgap control in coupled magnonic crystals // IEEE Trans. on Magnetics. 2014. Vol. 50, No 11. 4007204. 25. Морозова М.А., Шешукова С.Е., Шараевский Ю.П. Механизмы формирования солитонов огибающей в периодических ферромагнитных структурах // Изв. вузов. Прикладная нелинейная динамика. 2010. No 5. С. 113. 26. Калиникос Б.А., Устинов А.Б., Баруздин С.А. Спин-волновые устройства и эхопроцессоры. Москва: Радиотехника. 2013. ISBN 9785-87070-362-3.

Short text (in English): 
Full text: