ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Sharaevskaya A. Y. Features of formation of band gaps in coupled structures based on magnonic crystals. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 6, pp. 59-68. DOI: 10.18500/0869-6632-2014-22-6-59-68

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 169)
Article type: 
537.613; 530.182; 622.4

Features of formation of band gaps in coupled structures based on magnonic crystals

Sharaevskaya Anna Yurevna, Saratov State University

There are introduced ferromagnetic periodic structures consist of two coupled magnonic crystals and related magnonic and crystal film, separated by a dielectric layer. The dispersion equation made for magnetostatic waves, that propagate in such structures and identified main features of formation band gaps and a comparison with a periodic structure of one magnonic crystal was made. It was shown that connection can effectively manage characteristics of band gaps in spectrum of magnetostatic waves, and theirs width and position in spectrum. The results can be realize for creating on basis of magnonic crystals frequency selective devices for selectively processing information signals with microwave range.

  1. Kivshar YS, Agraval GP. Optical Solitons. From Fiber to Photonic Crystals. Academic Press; 2003. 540 p.
  2. Gulyaev YV, Nikitov SA, Zhivotovsky LV, Klimov AA, Tailhades P, Presmanes PL, Bonningue C, Tsai CS, Vysotskii LS, Filimonov YA. Ferromagnetic films with periodic structures with a magnon band gap: Magnon crystals. JETP Letters. 2003;77(10):567-570. DOI: 10.1134/1.1595698.
  3. Nikitov SA, Tailhadesand P, Tsai CS. Spin waves in periodic magnetic structures – magnonic crystals. Journal of Magnetism and Magnetic Materials, 2001;236(3):320-330. DOI: 10.1016/S0304-8853(01)00470-X.
  4. Chumak AV, Serga AA, Hillebrands B, Kostylev MP. Scattering of backward spin waves in a one-dimensional magnonic crystal. Appl. Phys. Lett. 2008;93(2):022508. DOI: 10.1063/1.2963027.
  5. Kruglyak VV, Demokritov SO, Grundler D. Magnonics. J. Phys. D. Appl. Phys. 2010;43(26):264001. DOI: 10.1088/0022-3727/43/26/260301.
  6. Serga AA, Chumak AV, Hillebrands B. YIG magnonics. J. Phys. D. Appl. Phys. 2010;43(26):264002. DOI: 10.1088/0022-3727/43/26/264002.
  7. Kashyap R. Fibe Bragg Gratings. San Diego, USA: Academic Рress; 1999. 632 p.
  8. Kim SK, Lee KS, Han DS. A gigahertz-range spin-wave filter composed of width-modulated nanostripmagnonic-crystal waveguides. Appl. Phys. Lett. 2009;95(8):082507. DOI: 10.1063/1.3186782.
  9. Ustinov AB, Drozdovskii AV, Kalinikos BA. Multifunctional nonlinear magnonic devices for microwave signal processing. Appl. Phys. Lett. 2010. Vol. 96, no. 14. P. 142513. DOI: 10.1063/1.3386540.
  10. Grishin SV, Beginin EN, Morozova MA, Sharaevskii YP, Nikitov SA. Self-generation of dissipative solitons in magnonic quasicrystal active ring resonator. J. Appl. Phys. 2014;115(5):053908. DOI: 10.1063/1.4864133.
  11. Arikan M, Au Y, Vasile G, Ingvarsson S, Kruglyak VV. Broadband injection and scattering of spin waves in lossy width-modulated magnonic crystal waveguides. J. Phys. D. Appl. Phys. 2013;46(13):135003. DOI: 10.1088/0022-3727/46/13/135003.
  12. Ciubotaru F, Chumak AV, Grigoryeva NY, Serga AA, Hillebrands B. Magnonic band gap design by the edge modulation of micro-sized waveguides. J. Phys. D. Appl. Phys. 2012;45(25):255002. DOI: 10.1088/0022-3727/45/25/255002.
  13. Beginin E.N., Filimonov Yu.A., Pavlov E.S., Vysotskii S.L., and Nikitov S.A. Bragg resonances of magnetostatic surface spin waves in a layered structure: Magnonic crystal-dielectric-metal // Applied Physics Letters. 2012. Vol. 100, no. 25. P. 252412. DOI: 10.1063/1.4730374.
  14. Chumak AV, Neumann T, Serga AA, Hillebrands B, Kostylev MP. A current-controlled, dynamic magnonic crystal. J. Phys. D. Appl. Phys. 2009;42(20):205005. DOI: 10.1088/0022-3727/42/20/205005.
  15. Annenkov AY, Gerus CB, Kovalev SI. Bulk and surface-bulk magnetostatic waves in waveguides produced by a step bias field. Tech. Phys. 2004;49(2):238–244. DOI: 10.1134/1.1648962.
  16. Costa CHO, Vasconcelos MS. Band gaps and transmission spectra in generalized Fibonacci σ(p, q) one-dimensional magnonicquasicrystals. J. Phys. Condens. Matter. 2013;25(28):286002. DOI: 10.1088/0953-8984/25/28/286002.
  17. Filimonov YY, Pavlov E, Vystostkii S, Nikitov S. Magnetostatic surface wave propagation in a one-dimensional magnonic crystal with broken translational symmetry. Appl. Phys. Lett. 2012;101(24):242408. DOI: 10.1063/1.4771126.
  18. Wang Q, Zhang H, Tang X, Su H, Bai F, Jing Y, Zhong Z. Effects of symmetry reduction on magnon band gaps in two-dimensional magnonic crystals. J. Phys. D. Appl. Phys. 2014;47(6):065004. DOI: 10.1088/0022-3727/47/6/065004.
  19. Sheshukova SE, Morozova MA, Beginin EN, Sharaevskii YP, Nikitov SA. Formation of gap solitons in a finite magnonic crystal. Phys. Wave Phenom. 2013;21(4):304-309. DOI: 10.3103/S1541308X13040134.
  20. Louisell WH. Coupled Mode and Parametric Electronics. New York: John Wiley; 1960. 268 p.
  21. Vashkovsky AV, Stalmakhov VS, Sharaevskii YP. Magnetostatic Waves in Microwave Electronics. Saratov: Saratov University Publishing; 1993. 312 p. (in Russian).
  22. Morozova MA, Sharaevskii YP, Sheshukova SE, Zhamanova MK. Investigation of self-action effects of magnetostatic waves in ferromagnetic structures in terms of the system of Schrodinger equations with coherent or incoherent coupling. Physics of the Solid State. 2012;54(8):1575-1583. DOI: 10.1134/S1063783412080227.
  23. Morozova МА, Sharaevskaya АY. Dispersion characteristics of magnetostatic waves in bounded magnon crystals. Heteromagnetic microelectronics. 2013;(15):82 (in Russian).
  24. Мorozova MA, Grishin SV, Sadovnikov AV, Sharaevskii YP, Nikitov SA. Magnonic bandgap control in coupled magnonic crystals. IEEE Trans. Magn. 2014;50(11):4007204. DOI: 10.1109/TMAG.2014.2321611.
  25. Morozova MA, Sharaevskii YP, Sheshukova SE. Mechanisms of formation of envelope solitons in periodic ferromagnetic structures. Izvestiya VUZ. Applied Nonlinear Dynamics. 2010;18(5):111-120 (in Russian). DOI: 10.18500/0869-6632-2010-18-5-111-120.
  26. Kalinikos BA, Ustinov AB, Baruzdin SA. Spin-Wave Devices and Echo Processors. Moscow: Radiotechnika; 2013. 216 p. (in Russian).
Short text (in English):
(downloads: 88)