For citation:
Silchenko A. N., Beri S., Luchinsky D. G., McClintock P. Fluctuational transitions across locally-disconnected and locally-connected fractal basin boundaries. Izvestiya VUZ. Applied Nonlinear Dynamics, 2003, vol. 11, iss. 3, pp. 38-45. DOI: 10.18500/0869-6632-2003-11-3-38-45
Fluctuational transitions across locally-disconnected and locally-connected fractal basin boundaries
We study fluctuational transitions in а discrete dynamical system that has two coexisting attractors in phase space, separated by а fractal basin boundary which may be cither locally-disconnected оr locaily-connected. It is shown that, in each case, transitions оссur via аn accessible point оn the boundary. The complicated structure of paths inside the locally-disconnecied fractal boundary is determined by а hierarchy of homoclinic original saddles. The most probable escape path from а regular attractor to the fractal boundary is found for the each type of boundary using both statistical analyses of fluctuational trajectories and the Hamiltonian theory оf fluctuations.
- Stratonovich RL. Topics in the Theory of Random Noise (Mathematics and its Applications). Taylor and Francis; 1967. 292 p.
- Anishchenko VS, Neiman AB, Vadivasova TE, Schimansky-Geier L, Astakhov VV. Nonlinear Dynamics оf Chaotic and Stochastic Systems. Berlin: Springer-Verlag; 2001. 446 p.
- Ott Е. Chaos in Dynamical Systems. Cambridge University Press; 2002. 478 p. DOI: 10.1017/CBO9780511803260.
- McDonald SW, Grebogi C, Ott E, Yorke JA. Fractal basin boundaries. Physica D. 1985;17(2):125–153. DOI: 10.1016/0167-2789(85)90001-6.
- Cartwright ML, Littlewood JE. Some fixed point theorems. Ann. Math. 1951;54(1):1–37. DOI: 10.2307/1969308; Moon FC, Li G-X. Fractal basin boundaries and homoclinic orbits for periodic motion in a two-well potential. Phys. Rev. Lett. 1985;55(14):1439–1442. DOI: 10.1103/PhysRevLett.55.1439.
- Sommerer JC, Ott Е. A physical system with qualitatively uncertain dynamics. Nature. 1993;365(6442):138–140. DOI: 10.1038/365138a0.
- Nusse HE, Yorke JA. Basins оf attraction. Science. 1996;271(5254):1376–1380. DOI: 10.1126/science.271.5254.1376.
- Hunt ВR, Оtt E, Rоsа Е. Sporadically fractal basin boundaries of chaotic systems. Phys. Rev. Lett. 1999;82(18):3597–3600. DOI: 10.1103/PhysRevLett.82.3597.
- Fradkov AL, Pogromsky AY. Introduction to control of oscillations and chaos. In: Series оn Nonlinear Science А. Vol. 35. Singapore: World Scientific; 1998. P. 408. DOI: 10.1142/3412.
- Boccaletti S, Grebogi C, Lai Y-C, Mancini H, Маzа В. The control оf chaos: theory and applications. Phys. Rep. 2000;392(3):103–197. DOI: 10.1016/S0370-1573(99)00096-4.
- Shinbrot T, Grebogi C, Ott Е, Yorke JA. Using small perturbations to control chaos. Nature. 1993;363(6428):411–417. DOI: 10.1038/363411a0; Auerbach D, Grebogi C, Оtt E, Yorke JA. Controlling chaos in high dimensional systems. Phys. Rev. Lett. 1992;69(24):3479–3482. DOI: 10.1103/PhysRevLett.69.3479.
- Onsager L, Machlup S. Fluctuations and irreversible processes. Phys. Rev. 1953;91(6):1505–1512. DOI: 10.1103/PhysRev.91.1505.
- Dykman М, McClintock PVE, Smelyanskiy VN, Stein ND, Stocks NG. Optimal paths and the prehistory problem for large fluctuations in noise driven systems. Phys. Rev. Lett. 1992;68(18):2718–2721. DOI: 10.1103/PhysRevLett.68.2718.
- Luchinsky DG, Maier RS, Mannella R, McClintock PVE, Stein DL. Experiments on critical phenomena in a noisy exit problem. Phys. Rev. Lett. 1997;79(17):3109–3112. DOI: 10.1103/PhysRevLett.79.3109; Luchinsky DG. On the nature of large fluctuations in equilibrium systems: observation оf аn optimal force. J. Phys. А. 1997;30:L577; Luchinsky DG, McClintock PVE. Irreversibility оf classical fluctuations studied in analogue electrical circuits. Nature. 1997;389(6650):463–466. DOI: 10.1038/38963.
- Freidlin MI, Wentzel AD. Random Perturbations in Dynamical Systems. New York: Springer; 1984. 328 p. DOI: 10.1007/978-1-4684-0176-9.
- Kaurz RL. Activation energy for thermally induced escape from а basin оf attraction. Phys. Lett. А. 1987;125(6–7):315–319. DOI: 10.1016/0375-9601(87)90151-4.
- Beale PD. Noise-induced escape from attractor in one-dimensional maps. Phys. Rev. А. 1989;40(7):3998–4003. DOI: 10.1103/PhysRevA.40.3998.
- Grassberger P. Noise-induced escape from attractors. J. Phys. A: Math. Gen. 1989;22(16):3283. DOI: 10.1088/0305-4470/22/16/018.
- Graham R, Hamm А, Tel Т. Nonequilibrium potentials for dynamical systems with fractal attractors оr repellers. Phys. Rev. Lett. 1991;66(24):3089–3092. DOI: 10.1103/PhysRevLett.66.3089.
- Soskin SM, Arrayds M, Mannella R, Silchenko AN. Strong enhancement of noise-induced escape by nonadiabatic periodic driving due to transient chaos. Phys. Rev. Е. 2001;63(5):051111. DOI: 10.1103/PhysRevE.63.051111.
- Holmes P. A nonlinear oscillator with а strange attractor. Phil. Trans. В. Soc. A. 1979;292(1394):419–448. DOI: 10.1098/rsta.1979.0068.
- Grebogi C, Ott E, Yorke JА. Basin boundaries metamorphoses – changes in accessible boundary orbits. Physica D. 1987;24(1–3):243–262. DOI: 10.1016/0167-2789(87)90078-9.
- Grebogi C, Ott E, Yorke JА. Unstable periodic orbits and the dimensions оf multifractal chaotic attractors. Phys. Rev. А. 1988;37(5):1711–1724. DOI: 10.1103/PhysRevA.37.1711.
- Dhamala M, Lai Y-С. The natural measure оf nonattracting chaotic sets and in representation by unstable periodic orbits. Int. J. Bifurc. Chaos. 2002;12(12):2991–3005. DOI: 10.1142/S0218127402006308.
- Silchenko AN, Luchinsky DG, McClintock PVE. Noise-induced escape through a fractal basin boundaries. Physica A. 2003;327(3–4):371–377. DOI: 10.1016/S0378-4371(03)00265-6.
- Gardini L, Mira C, Barugola J, Cathala JC. Chaotic Dynamics in Two-Dimensional Noninvertible Maps. World Scientific Publishing; 1996. 632 p. DOI: 10.1142/2252.
- Devanye RL. Introduction to Chaotic Dynamical Systems. New-York: Addison-Wesley; 1989. 336 p.
- Bhattacharjee R, Devaney RL. Tying hairs for the structurally stable exponentials. Ergodic Theory and Dynamical Systems. 2000;20(6):1603–1617. DOI: 10.1017/S0143385700000882.
- 439 reads