ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Zaburdaev V. J., Sokolov I. M. Fractional diffusion equation for aging and equilibrated random walks. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 4, pp. 79-97. DOI: 10.18500/0869-6632-2009-17-4-79-97

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 134)
Article type: 
536.76; 536-12.01

Fractional diffusion equation for aging and equilibrated random walks

Zaburdaev Vasilij Jurevich, Technische Universitßt Berlin
Sokolov Igor Mihajlovich, Technische Universitßt Berlin

We consider continuous time random walks and discuss situations pertinent to aging. These correspond to the case when the initial state of the system is known not at preparation (at t = 0) but at the later instant of time t1 > 0 (intermediate-time initial condition). We derive the generalized aging diffusion equation for this case and express it through a single memory kernel. The results obtained are applied to the practically relevant case of the equilibrated random walks. We moreover discuss some subtleties in the setup of the aging subdiffusion problem and show that the behavior of the system depends on what was taken as the intermediate-time initial condition: whether it was coordinate of one particle given by measurement or the whole probability distribution. The two setups lead to different predictions for the evolution of a system. This fact stresses the necessity of a precise definition of aging statistical ensembles.

  1. Montroll EW, Shlesinger MF. Nonequilibrium Phenomena II: From Stochastic to Hydrodynamics. In «Studies in Statistical Mechanics». Eds. Leibowitz J, Montroll EW. Amsterdam: North–Holland; 1984. 296 p.
  2. Haus JW, Kehr KW. Diffusioninregularand Disorderedlattices. Phys. Rep. 1987;150(5-6):263–406.
  3. Metzler R, Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 2000;339(1):1–77. DOI: 10.1016/S0370-1573(00)00070-3.
  4. Bouchaud JP, Georges A. Anomalous diffusion in disordered media: Statistical mechanisms models and physical applications. Phys. Rep. 1990;195(4-5):127–293.
  5. Struick LCE. Physical Aging in Amorphous Polymers and Other Materials. Houston: Elsevier; 1978. 229 p.
  6. Bouchaud JP, Cugliandolo LF, Mezard M, Kurchan J. In «Spin Glasses and Random Fields». Ed. Young AP. Singapore: World Scientific; 1997.
  7. Dupuis V, Bert F, Bouchaud JP, Hammann J, Ladieu F, Parker D, Vincent E. Aging, rejuvenation and memory phenomena in spin glasses. PRAMANA-J. Phys. 2005;64(6):1109–1119. DOI: 10.1007/BF02704172.
  8. Bellour M, Knaebel A, Harden JL, Lequeux F, Munch JP. Aging processes and scale dependence in soft glassy colloidal suspensions. Phys. Rev. E. 2003;67(3):031405.
  9. Abou B, Bonn D, Meunier J. Aging dynamics in a colloidal glass. Phys Rev E Stat Nonlin Soft Matter Phys. 2001;64(2):021510. DOI: 10.1103/PhysRevE.64.021510.
  10. Ovarlez G, Clement E. Slow dynamics and aging of a confined granular flow. Phys. Rev. E. 2003;68(3):031302.
  11. Josserand C, Tkachenko AV, Mueth DM, Jaeger HM. Memory effects in granular materials. Phys. Rev. Lett. 2000;85(17):3632–3635.
  12. Havlin S, Kiefer JE, Weiss GH. Anomalous diffusion on a random comblike structure. Phys Rev A Gen Phys. 1987;36(3):1403-1408. DOI: 10.1103/physreva.36.1403.
  13. Le Doussal P, Monthus C, Fisher DS. Random walkers in one-dimensional random environments: exact renormalization group analysis. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999;59(5):4795–4840. DOI: 10.1103/physreve.59.4795.
  14. Aquino G, Bologna M, Grigolini P, West BJ. Aging and rejuvenation with fractional derivatives. Phys. Rev. E. 2004;70(3):036105. DOI: 10.1103/PhysRevE.70.036105.
  15. Allegrini P, Aquino G, Grigolini P, Palatella L, Rosa A. Generalized master equation via aging continuous-time random walks. Phys. Rev. E. 2003;68(5):056123. DOI: 10.1103/PHYSREVE.68.056123.
  16. Barkai E. Phys. Rev. Lett. 2003;90(10):104101.
  17. Barkai E, Cheng YC. Aging continuous time random walks. J. Chem Phys. 2003;118(14):6167–6178.
  18. Sokolov IM, Blumen A, Klafter J. Dynamics of Annealed Systems under External Fields: CTRW and the Fractional Fokker-Planck Equations. Europhys. Lett. 2001;56:175–180. DOI: 10.1209/epl/i2001-00503-6.
  19. Sokolov IM, Blumen A, Klafter J. Linear Response in Complex Systems: CTRW and the Fractional Fokker-Planck Equations. Physica A. 2001;302(1):268–278. DOI: 10.1016/S0378-4371(01)00470-8.
  20. Monthus C, Bouchaud JP. Models of traps and glass phenomenology. J. Phys. A: Math. and Gen. 1996;29(14):3847–3869. DOI: 10.1088/0305-4470/29/14/012.
  21. Havlin S, Ben-Avraham D. Diffusion in Disordered Media. Adv. Phys. 2002;51(1):187–292.
  22. Zaburdaev Vyu, Chukbar KV. Memory Effects in Stochastic Transport. JETP Lett. 2003;77(10):551–555.
  23. Chechkin AV, Gorenflo R, Sokolov IM. J. Phys. A: Math. and Gen. 2005;38(42):679–684. DOI: 10.1088/0305-4470/38/42/L03.
  24. Gordeche C, Luck JM. Statistics of the occupation time of renewal processes. J. Stat. Phys. 2001;104:489–524.
  25. Scalas E, Gorenflo R, Mainardi F. Uncoupled continuous-time random walks: solution and limiting behavior of the master equation. Phys. Rev. E. 2004;69(1):011107. DOI: 10.1103/PhysRevE.69.011107.
  26. Sokolov IM, Chechkin AV, Klafter J. Distributed-Order Fractional Kinetics. Acta Physica Polonica B. 2004;35(4):1323–1580.
  27. Tunaley JKE. Theory of ac Conductivity Based on Random Walks. Phys. Rev. Lett. 1974;33(17):1037–1039. DOI: 10.1103/PhysRevLett.33.1037.
  28. Tunaley JKE. J. Stat. Phys. 1976;14:461–463.
  29. Mantegna RN, Stanley HE. Stochastic Process with Ultraslow Convergence to a Gaussian: The Truncated Lévy Flight. Phys. Rev. Lett. 1994;73(22):2946–2949. DOI: 10.1103/PhysRevLett.73.2946.
  30. Sokolov IM, Chechkin AV, Klafter J. Fractional diffusion equation for a power-law-truncated Lévy process. Physica A. 2004;336(3-4):245–251. DOI: 10.1016/j.physa.2003.12.044.
  31. Barsegov V, Mukamel S. Multipoint Fluorescence Quenching-Time Statistics for Single Molecules with AnomalousDiffusion. J Phys. Chem. A. 2004;108(1):15–24. DOI: 10.1021/jp030676r.
  32. Barkai E, Sokolov IM. Multi-point Distribution Function for the Continuous Time Random Walk. J. Stat. Mech. 2007:08001. DOI: 10.1088/1742-5468/2007/08/P08001.
  33. Chukbar KV. Stochastic transport and fractional derivatives. JETP. 1995;81(5):1025–1029.
  34. Zaburdaev Vyu, Chukbar KV. Enhanced Superdiffusion and Finite Velocity of Levy Flights. JETP. 2002;94(2):252–259.
  35. Jaynes ET. Information theory and statistical Mechanics. Phys. Rev. 1957;106(4):620–630.
  36. Baule A, Friedrich R. A fractional diffusion equation for two-point probability distributions of a continuous-time random walk. Europhys. Lett. 2007;77(1):10002. DOI: 10.1209/0295-5075/77/10002.
Short text (in English):
(downloads: 116)