For citation:
Kuznetsov S. P., Sataev I. R. A hybrid of period - doubling cascade and tangent bifurcation: quantitative universality and two-parameter scaling. Izvestiya VUZ. Applied Nonlinear Dynamics, 1995, vol. 3, iss. 4, pp. 3-11. DOI: 10.18500/0869-6632-1995-3-4-3-11
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language:
Russian
Heading:
Article type:
Article
UDC:
517.9
A hybrid of period - doubling cascade and tangent bifurcation: quantitative universality and two-parameter scaling
Autors:
Kuznetsov Sergey Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Sataev Igor Rustamovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract:
Universal self-similar topography of the parameter space which may occur in two-parameter analysis of transition to chaos is investigated using a simple twodimensional model map.
Key words:
Acknowledgments:
The work was carried out with financial support from the Russian Foundation for Basic Research (project № 93-02-16169).
Reference:
- Schuster HG. Deterministic Chaos. Weinheim: VCH; 1988. 270 p.
- Bergé P, Pomeau Y, Vidal C. Order within Chaos. N.Y.: Wiley; 1986. 329 p.
- Feigenbaum МJ. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 1978;19(1):25-52. DOI: 10.1007/BF01020332.
- Feigenbaum MJ. The universal metric properties of nonlinear transformations. J. Stat. Phys. 1979;21(6):669-706. DOI: 10.1007/BF01107909.
- Eckmann JP, Koch H, Wittwer P. Existence of a fixed point of the doubling transformation for area-preserving maps of the plane. Phys. Rev. A. 1982;26(1):720-722. DOI: 10.1103/PhysRevA.26.720.
- Widom М, Kadanoff LP. Renormalization group analysis of bifurcations in area-preserving maps. Physica D. 1982;5(2-3):287-292. DOI: 10.1016/0167-2789(82)90023-9.
- Kuznetsov SP, Sataev LR. New types of critical dynamics for two-dimensional maps. Phys. Lett. A. 1992;162:236-242. DOI: 10.1016/0375-9601(92)90440-W.
- Cathala JC, Kawakami H, Mira C. Singular points with two multipliers, S1 =-S2 =1, in the bifurcation curves of maps. Int. J. Bif. Chaos. 1992;2(4):1001-1004. DOI: 10.1142/S0218127492000616.
Received:
13.10.1992
Accepted:
15.10.1993
Published:
13.10.1996
Journal issue:
- 282 reads