ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Semenova N. И., Tuchin V. V. Impact of osmotic pressure on cancer cells in a three-dimensional cellular lattice and cell spheroid. Izvestiya VUZ. Applied Nonlinear Dynamics, 2021, vol. 29, iss. 4, pp. 559-570. DOI: 10.18500/0869-6632-2021-29-4-559-570

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 699)
Article type: 
530.182, 616.5-006

Impact of osmotic pressure on cancer cells in a three-dimensional cellular lattice and cell spheroid

Semenova Nadezhda Игоревна, Saratov State University
Tuchin Valerij Viktorovich, Saratov State University

The purpose of this work is to study the peculiarities of external influence, namely osmotic pressure, on cancer cells. Methods. For this purpose, spatially distributed systems describing the dynamics of a three-dimensional cell lattice, a cell spheroid, and a cell surface have been considered. The studied models are based on the basic principles of hydrodynamics, and their numerical simulation has been performed using a modified Euler method. Results. The paper proposes three-dimensional models to study the dynamics of cancer cells in the epidermal layer of the skin; the models include the possibility of adding additional pressure and changing it with a single parameter. It is shown that it is possible to achieve a slowdown of cancer cell growth in all considered models at certain values of osmotic pressure.

This study is supported by the grant of RF Government No. 14.Z50.31.0044
  1. Murray JD. Mathematical Biology. Berlin, Heidelberg: Springer-Verlag; 1993. 770 p. DOI: 10.1007/978-3-662-08542-4.
  2. Prigogine I, Nicolis G. Self-Organisation in Nonequilibrium Systems: Towards A Dynamics of Complexity. In: Hazewinkel M, Jurkovich R, Paelinck JHP, editors. Bifurcation Analysis. Dordrecht: Springer; 1985. P. 3–12. DOI: 10.1007/978-94-009-6239-2_1.
  3. Turing AM. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B. 1952;237(641): 37–72. DOI: 10.1098/rstb.1952.0012.
  4. Maini PK. Hierarchical models for spatial pattern formation in biology. Journal of Biological Systems. 1995;3(4):987–997. DOI: 10.1142/S0218339095000885.
  5. Murray JD, Cook J, Tyson R, Lubkin SR. Spatial pattern formation in biology: I. Dermal wound healing. II. Bacterial patterns. Journal of the Franklin Institute. 1998;335(2):303–332. DOI: 10.1016/S0016-0032(97)00034-3.
  6. Scarabotti P, Govezensky T, Bolcatto P, Barrio RA. Universal model for the skin colouration patterns of neotropical catfishes of the genus Pseudoplatystoma. Sci. Rep. 2020;10(1):12445. DOI: 10.1038/s41598-020-68700-0.
  7. Clarke MA, Fisher J. Executable cancer models: successes and challenges. Nat. Rev. Cancer. 2020;20(6):343–354. DOI: 10.1038/s41568-020-0258-x.
  8. Karolak A, Markov DA, McCawley LJ, Rejniak KA. Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues. J. R. Soc. Interface. 2018;15(138):20170703. DOI: 10.1098/rsif.2017.0703.
  9. Metzcar J, Wang Y, Heiland R, Macklin P. A review of cell-based computational modeling in cancer biology. JCO Clinical Cancer Informatics. 2019;3(3):1–13. DOI: 10.1200/CCI.18.00069.
  10. Voutouri C, Stylianopoulos T. Evolution of osmotic pressure in solid tumors. J. Biomech. 2014;47(14):3441–3447. DOI: 10.1016/j.jbiomech.2014.09.019.
  11. Cheng G, Tse J, Jain RK, Munn LL. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS ONE. 2009;4(2):e4632. DOI: 10.1371/journal.pone.0004632.
  12. Tse JM, Cheng G, Tyrrell JA, Wilcox-Adelman SA, Boucher Y, Jain RK, Munn LL. Mechanical compression drives cancer cells toward invasive phenotype. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(3):911–916. DOI: 10.1073/pnas.1118910109.
  13. La Porta CAM, Ghilardi A, Pasini M, Laurson L, Alava MJ, Zapperi S, Ben Amar M. Osmotic stress affects functional properties of human melanoma cell lines. Eur. Phys. J. Plus. 2015;130(4):64. DOI: 10.1140/epjp/i2015-15064-x.
  14. Macklin P, Edgerton ME. Discrete cell modelling. In: Cristini V, Lowengrub J, editors. Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach. Cambridge: Cambridge University Press; 2010. P. 88–122. DOI: 10.1017/CBO9780511781452.007.
  15. Giatili SG, Stamatakos GS. A detailed numerical treatment of the boundary conditions imposed by the skull on a diffusion–reaction model of glioma tumor growth. Clinical validation aspects. Applied Mathematics and Computation. 2012;218(17):8779–8799. DOI:10.1016/j.amc.2012.02.036.
  16. Hoshino T, Liu MW, Wu KA, Chen HY, Tsuruyama T, Komura S. Pattern formation of skin cancers: Effects of cancer proliferation and hydrodynamic interactions. Phys. Rev. E. 2019;99(3):032416. DOI: 10.1103/PhysRevE.99.032416.
  17. Montel F, Delarue M, Elgeti J, Vignjevic D, Cappello G, Prost J. Isotropic stress reduces cell proliferation in tumor spheroids. New J. Phys. 2012;14(5):055008. DOI: 10.1088/1367-2630/14/5/055008.
  18. Villani TS, Gardner G, Johnson M, Crider N. 3D High Content Imaging of Optically-Cleared Spheroids for Cancer Drug Screening. New Jersey, US: Visikol; 2017.
  19. Grist SM, Nasseri SS, Poon T, Roskelley C, Cheung KC. On-chip clearing of arrays of 3-D cell cultures and micro-tissues. Biomicrofluidics. 2016;10(4):044107. DOI: 10.1063/1.4959031.
  20. Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Research. 1987;47(12): 3039–3051.
  21. Doi M. Soft Matter Physics. Oxford: Oxford University Press; 2013. 272 p. DOI: 10.1093/acprof:oso/9780199652952.001.0001.
  22. Chatelain C, Balois T, Ciarletta P, Ben Amar M. Emergence of microstructural patterns in skin cancer: a phase separation analysis in a binary mixture. New J. Phys. 2011;13(11):115013. DOI: 10.1088/1367-2630/13/11/115013.