ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kochkurov L. A., Balakin M. I., Kuptsov P. V., Morozov Y. A. Impact of time delay on the dynamics of optical parametric oscillator with intra-cavity pumping by semiconductor disk laser. Izvestiya VUZ. Applied Nonlinear Dynamics, 2019, vol. 27, iss. 3, pp. 61-72. DOI: 10.18500/0869-6632-2019-27-3-61-72

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 121)
Language: 
Russian
Article type: 
Article
UDC: 
535.015; 535.14; 535.530; 537.86

Impact of time delay on the dynamics of optical parametric oscillator with intra-cavity pumping by semiconductor disk laser

Autors: 
Kochkurov Leonid Alekseevich, Yuri Gagarin State Technical University of Saratov
Balakin Maksim Igorevich, Yuri Gagarin State Technical University of Saratov
Kuptsov Pavel Vladimirovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Morozov Y. A., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

Theme. The dynamics of a nonlinear numerical model of a nonlinear optical interaction in the semiconductor disk laser resonator under influence of the time delay is investigated. The conditions of self-excitation, stationary generation modes and their stability are studied. Methods. The analysis of stationary generation stability was performed with DDE-Biftool package. Analysis of higher dimensional regimes was performed using numerical integration, construction of phase portraits, spectra and calculation of Lyapunov exponents. Results. A numerical simulation of the dynamics in the region of steady state instability shown, that the instability is quasi-harmonic only in the vicinity of Andronov–Hopf bifurcation, and quickly turns into quasi-periodic instability with variation of control parameters. Transient dynamics is studied. Discussion. The results can be used for optimization of laser generator parameters in high resolution spectroscopy devices.

Reference: 
  1. Sorokina I.T., Vodopyanov K.L., eds. Solid-State Mid-Infrared Laser Sources. Ser. Topics in Applied Physics, Vol. 89. Springer-Verlag, 2003. 558 p.
  2. Morozov Y.A., Morozov M.Y., Kozlovsky V.I., Okhotnikov O.G. Compact intracavity singly-resonant optical parametric oscillator pumped by GaSb-based vertical external cavity surface-emitting laser: Concept and the main operational characteristics // IEEE J. of Selected Topics in Quantum Electron. 2015.Vol. 21, no. 1. 1603105–1–1603105–5.
  3. Morozov Y.A. Multi-mode dynamics of optical oscilators based on intracavity nonlinear frequency down-conversion // Appl. Phys B. 2018. Vol. 124, no. 1. 12–1–12–7.
  4. Stothard D.J.M., Hopkins J.-M., Burns D., Dunn M.H. Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL) // Optics Express. 2009. Vol. 17, no. 13. P. 10648–10658.
  5. Siegman A.E. Lasers, University Science Book, 20 Edgehill Road, Mill Valley, California, 1986.
  6. Oshman M.K. and Harris S.E. Theory of optical parametric oscillation internal to the laser cavity// IEEE J. Quantum Electron. 1968. Vol. QE-4, no. 8. P. 491–502.
  7. Hodges S.E., Munroe M., Cooper J., Raymer M.G. Multimode laser model with coupled cavities and quantum noise // JOSA B. 1997. Vol. 14, no. 1. P. 191–199.
  8. Turnbull G.A., Dunn M.H., Ebrahimzadeh M. Continuous-wave, intracavity optical parametric oscillators: an analysis of power characteristics // Appl. Phys B. 1998. Vol. 66. P. 701–710.
  9. Morozov Y.A. Transient power characteristics of a compact singly resonant intracavity optical parametric oscillator pumped by a semiconductor disk laser // JOSA B. 2016. Vol. 33, no. 7. P. 1470–1475.
  10. Park J.-D., Seo D.-S., McInerney J. Self-pulsations in strongly coupled asymmetric external cavity semiconductor lasers // IEEE J. Quantum Electron. 1990. Vol. 26, no. 8. P. 1353–1362.
  11. Hui R.-Q., Tao S.-P. Improved rate equations for external cavity semiconductor lasers // IEEE J. Quantum Electron. 1989. Vol. 25. P. 1580–1584.
  12. van Tartwijk G.H. M., Lenstra D. Semiconductor laser with optical injection and feedback //Quantum Semiclass. Opt. 1995. Vol. 7. P. 87–143.
  13. Morozov Y.A., Leinonen T., Hark  ̈ onen A., Pessa M.  ̈ Simultaneous dual-wavelength emission from vertical external-cavity surface-emitting laser: A numerical modeling // IEEE J. Quantum Electron. 2006. Vol. 42. P. 1055–1061.
  14. Lang R., Kobayashi K. External optical feedback effects on semiconductor injection laser properties // IEEE J. Quantum Electron. 1980. Vol. 16. P. 347–355.
  15. Morozov Y.A., Balakin M.I., Kochkurov L.A., Morozov M.Y. Generator difference frequency and optical parametric generator with intracavity-pumped semiconductor disk laser: A comparative analysis of the models with a delay. Izv. of Saratov State University. New Ser. Ser. Phyzika, 2019, vol. 19, no. 1, pp. 34–42 (in Russian).
  16. Calvez S., Burns D., Dawson M.D. Optimization of an optically pumped 1.3-μm GaInNAs vertical-cavity surface-emitting laser // IEEE Phot. Techn. Lett. 2002. Vol. 14, no. 2. P. 131–133.
  17. Tropper A.C., Hoogland S. Extended cavity surface-emitting semiconductor lasers // Prog. Quantum Electronics. 2006. Vol. 30. P. 1– 43.
  18. Engelborghs K., Luzyanina T., Samaey G. DDE-BIFTOOL. v.2.00 user manual: a Matlab package for bifurcation analysis of delay differential equations. Technical Report TW-330, Katholieke Universiteit Leuven, Leuven, Belgium (2001).
  19. Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. Part 1: Theory // Meccanica. 1980. Vol. 15, no. 1. P. 9–20.
  20. Shimada I., Nagashima T. A numerical approach to ergodic problem of dissipative dynamical systems // Prog. Theor. Phys. 1979. Vol. 61, no. 6. P. 1605–1616.
  21. Kuptsov P., Parlitz U. Theory and computation of covariant Lyapunov vectors // Journal of Nonlinear Science. 2012. Vol. 22, no. 5. P. 727–762. DOI 10.1007/s00332-012-9126-5.
  22. Kuptsov P.V. Computation of Lyapunov exponents for spatially extended systems: Advantages and limitations of various numerical methods. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, no. 5, pp. 93–112 (in Russian).
  23. Kuptsov P.V., Kuznetsov S.P. Numerical test for hyperbolicity of chaotic dynamics in time-delay systems // Phys. Rev. E. 2016. Vol. 94. 010201(R).
  24. Kuptsov P.V., Kuznetsov S.P. Numerical test for hyperbolicity in chaotic systems with multiple time delays // Communications in Nonlinear Science and Numerical Simulation. 2018. Vol. 56. P. 227–239.
Received: 
28.03.2019
Accepted: 
15.05.2019
Published: 
20.06.2019
Short text (in English):
(downloads: 164)