ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Vysotskii S. L., Nikitov S. A., Novitsky N. N., Pavlov E. S., Stognij A. I., Filimonov Y. A. Influence of first order parametric instability on formation of forbidden gaps in spectra of magnetostatic surface waves in one-dimensional ferrite magnonic crystal. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 2, pp. 3-11. DOI: 10.18500/0869-6632-2012-20-2-3-11

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 133)
Language: 
Russian
Article type: 
Article
UDC: 
537.632

Influence of first order parametric instability on formation of forbidden gaps in spectra of magnetostatic surface waves in one-dimensional ferrite magnonic crystal

Autors: 
Vysotskii S. L., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Nikitov Sergej Apollonovich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Novitsky Nikolay Nikolaevich, Scientific-Practical Materials Research Centre NAS of Belarus
Pavlov Evgenij Sergeevich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Stognij Aleksandr Ivanovich, Scientific-Practical Materials Research Centre NAS of Belarus
Filimonov Y. A., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

Magnetostatic surface waves propagation in one-dimensional magnonic crystal obtained by etching of array of grooves (56 width, 0.66 deep, period 98 ) in yttriumiron garnet film of 4.1 thickness was investigated at first order (three-magnon) parametric instability. It was shown that forbidden gaps don’t form at region of magnonic crystal where propagation of magnetostatic surface waves is nonlinear because of destroy of phase synchronism of incident and reflected waves. 

Reference: 
  1. Gurevich AG, Melkov GA. Magnetization Oscillations and Waves. London: CRC Press, 1996.
  2. Lvov VS. Nonlinear spin waves. Moscow: Nauka; 1987. 270 p. (in Russian).
  3. Schilz W. Spin-wave propagation in epitaxial YIG films. Phylips Res. Rep. 1973;28(1):50–65.
  4. Mednikov AM. Nonlinear effects in the propagation of surface spin waves in YIG-films. Sov. Phys. Solid State. 1981;23(1):242–245 (in Russian).
  5. Chivileva OA, Gurevich AG, Anisimov AN, Gusev BN, Vugal'ter VA, Sher ES. Threshold fields and magnetizations under parametric spin wave excitation by a surface magnetostatic ware. Fizika Tverdogo Tela. 1987;29(6):1774–1782 (in Russian).
  6. Kazakov GT, Kozhevnikov AV, Filimonov YA. The effect of parametrically excited spin waves on the dispersion and damping of magnetostatic surface waves in ferrite films. J. Exp. Theor. Phys. 1999;88:174–181. DOI: 10.1134/1.558780.
  7. Grishin SV, Sharaevskii YuP. Nonlinear frequency-selective device on magnetostatic waves. Microwaves, Radar and Wireless Communications, 2004. MIKON-2004. 15th International Conference. 2004;1:166–169. DOI: 10.1109/MIKON.2004.1356888.
  8. Beginin EN, Grishin SV, Sharaevsky YuP. Generator of chaotic ultrahigh-frequency pulses. Patent RF No. 2386204. Publ. 10.04.2010.
  9. Gulyaev YuV, Nikitov SA. Magnonic crystals and spin waves in periodic structures. Doklady Physics. 2001;46(10):687–689. DOI: 10.1134/1.1415579.
  10. Vysotskii SL, Nikitov SA, Filimonov YuA. Magnetostatic spin waves in two-dimensional periodic structures (magnetophoton crystals). Journal of Experimental and Theoretical Physics. 2005;101(3):547–553. DOI: 10.1134/1.2103224.
  11. Serga AA, Chumak AV, Hillebrands B. YIG magnonics. J. Phys. D. Appl. Phys. 2010;43(26):264002. DOI: 10.1088/0022-3727/43/26/264002.
  12. Ustinov AB, Drozdovskii AV, Kalinikos BA. Multifunctional nonlinear magnonic devices for microwave signal processing. Appl. Phys. Lett. 2010;96:142513. DOI: 10.1063/1.3386540.
  13. Vysotskii SL, Kozhevnikov AV, Kazakov GT, Nikitov SA, Filimonov YA. Magnetostatic surface waves parametric instability in two-dimensional (2D) magnonic crystals. Izvestiya VUZ. Applied Nonlinear Dynamics. 2007;15(3):58–73 (in Russian). DOI: 10.18500/0869-6632-2007-15-3-58-73.
  14. Chen Niu-Niu, Slavin AN, Gottam MG. Gap solitons in periodic structures: Modulated magnetic thin films. Phys. Rev. B. 1993;47:8667–8671. DOI: 10.1103/physrevb.47.8667.
  15. Ustinov AB, Grigor’eva NY, Kalinikos BA. Observation of spin-wave envelope solitons in periodic magnetic film structures. Jetp Lett. 2008;88:31–35. DOI: 10.1134/S0021364008130079.
  16. Drozdovskii AV, Cherkasskii MA, Ustinov AB, et al. Formation of envelope solitons of spin-wave packets propagating in thin-film magnon crystals. Jetp Lett. 2010;91:16–20. DOI: 10.1134/S0021364010010042.
  17. Karenowska AD, Chumak AV, Serga AA, Gregg JF, Hillebrands B. Magnonic crystal based forced dominant wavenumber selection in a spin-wave active ring. Appl. Phys. Lett. 2010;96:082505. DOI: 10.1063/1.3318258.
Received: 
16.01.2012
Accepted: 
02.03.2012
Published: 
29.06.2012
Short text (in English):
(downloads: 96)