ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Pavlova O. N., Tupicyn A. N., Pavlov A. N. Influence of low-frequency magnetic field on characteristics of physiological tremor. Izvestiya VUZ. Applied Nonlinear Dynamics, 2006, vol. 14, iss. 6, pp. 75-87. DOI: 10.18500/0869-6632-2006-14-6-75-87

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 85)
Article type: 

Influence of low-frequency magnetic field on characteristics of physiological tremor

Pavlova Olga Nikolaevna, Saratov State University
Tupicyn Anatolij Nikolaevich, Saratov State University
Pavlov Aleksej Nikolaevich, Saratov State University

Based on the wavelet-analysis technique, a study is performed of how characteristics of physiological tremor are changed at the influence of a weak low-frequency magnetic field. Different approaches to analyze the structure of experimental data are considered using both, real and complex wavelet-transform basic functions. It is shown that magnetic field has an effect on a local regularity of analyzed processes and on their energy characteristics. 

Key words: 
  1. Gandhi OP, Kang G, Wu D, Lazzi G. Currents induced in anatomic models of the human for uniform and nonuniform power frequency magnetic fields. Bioelectromagnetics. 2001;22(2):112–121.
  2. Gauger JR. Household appliance magnetic field survey. IEEE Transactions on Power apparatus and systems. 1985;104(9):40–40. DOI: 10.1109/MPER.1985.5526448.
  3. Beuter A, Glass L, Mackey MC, Titcombe MS. Nonlinear Dynamics in Physiology and Medicine. New York: Springer-Verlag; 2003. 434 p.
  4. Cook CM, Thomas AW, Prato FS. Resting EEG is affected by exposure to a pulsed ELF magnetic field. Bioelectromagnetics. 2004;25(3):196–203. DOI: 10.1002/bem.10188.
  5. Thomas AW, Drost DJ, Prato FS. Human subjects exposed to a specific pulsed (200 microT) magnetic field: effects on normal standing balance. Neurosci Lett. 2001;297(2):121–124. DOI: 10.1016/s0304-3940(00)01688-8.
  6. Wachs H, Boshes B. Tremor studies in normals and in Parkinsonism. Arch Neurol. 1961;4:66–82. DOI: 10.1001/archneur.1961.00450070068008.
  7. Elble RJ, Koller WC. Tremor. London: The John Hopkins University press; 1990. 204 p.
  8. McAuley JH, Marsden CD. Physiological and pathological tremors and rhythmic central motor control. Brain. 2000;123(8):1545–1567. DOI: 10.1093/brain/123.8.1545.
  9. Legros A, Beuter A. Effect of a low intensity magnetic field on human motor behavior. Bioelectromagnetics. 2005;26(8):657–669. DOI: 10.1002/bem.20161.
  10. Grossman A, Morlet J. Decomposition of hardy functions into square integrable wavelets of constant shape. S.I.A.M. J. Math. Anal. 1984;15/:723; Daubechies I. Ten lectures on Wavelets. Philadelphie: S.I.A.M. 1992; Meyer Y. (ed.) Wavelets and Applications. Berlin: Springer–Verlag. 1992. 450 p.
  11. Chui CK. An Introduction to Wavelets. New York: Academic Press, 1992; Stolnitz E, DeRose T, Salezin D. Wavelets in computer graphics. Izhevsk: RCD. 2002; Koronovskii AA, Khramov AE. Continuous Wavelet Analysis. Saratov: Kolledg; 2002. (In Russian).
  12. Janson NB, Pavlov AN, Anishchenko VS. Global reconstruction: application to biological data and secure communication. Invited chapter in book Chaos and its reconstruction. Eds. G.Gouesbet, S.Meunier-Guttin-Cluzel. New York: Novascience publishers; 2003. P. 287.
  13. Mallat SG. A Wavelet Tour of Signal Processing. San Diego: Academic Press; 1998.
  14. Muzy JF, Bacry E, Arneodo A. The multifractal formalism revisited with wavelets. Int. J. Bifurcation and Chaos. 1994;4(2):245–302. DOI: 10.1142/S0218127494000204.
  15. Muzy JF, Bacry E, Arneodo A. Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993;47(2):875–884; Ivanov PCh, Nunes Amaral LA, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, Stanley HE. Multifractality in human heartbeat dynamics. Nature. 1999;399(6735):461–465; Pavlov AN, Ziganshin AR, Anishchenko VS. Multifractal Analysis Of Time Series. Izvestiya VUZ. Applied Nonlinear Dynamics. 2001;9(3):39–53; Pavlov AN, Sosnovtseva OV, Ziganshin AR, Holstein-Rathlou N-H, Mosekilde E. Multiscality in the dynamics of coupled chaotic systems. Physica A. 2002;316:233–249.
  16. Astafieva NM. Wavelet analysis: basic theory and some applications. Phys. Usp. 1996;39(11):1085–1108. DOI: 10.3367/UFNr.0166.199611a.1145.
Short text (in English):
(downloads: 27)