ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Pavlova O. N., Tupicyn A. N., Pavlov A. N. Influence of low-frequency magnetic field on characteristics of physiological tremor. Izvestiya VUZ. Applied Nonlinear Dynamics, 2006, vol. 14, iss. 6, pp. 75-87. DOI: 10.18500/0869-6632-2006-14-6-75-87

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 70)
Article type: 

Influence of low-frequency magnetic field on characteristics of physiological tremor

Pavlova Olga Nikolaevna, Saratov State University
Tupicyn Anatolij Nikolaevich, Saratov State University
Pavlov Aleksej Nikolaevich, Saratov State University

Based on the wavelet-analysis technique, a study is performed of how characteristics of physiological tremor are changed at the influence of a weak low-frequency magnetic field. Different approaches to analyze the structure of experimental data are considered using both, real and complex wavelet-transform basic functions. It is shown that magnetic field has an effect on a local regularity of analyzed processes and on their energy characteristics. 

Key words: 
  1. Gandhi O.P., Kang G., Wu D., Lazzi G. Currents induced in anatomic models of the human for uniform and nonuniform power frequency magnetic fields // Bioelectromagnetics. 2001. Vol. 22(2). P. 112.
  2. Gauger J.R. Household appliance magnetic field survey // IEEE Transactions on Power apparatus and systems. 1985. Vol. 104. P. 9.
  3. Beuter A., Glass L., Mackey M.C., Titcombe M.S. Nonlinear Dynamics in Physiology and Medicine (Springer-Verlag, New York, 2003).
  4. Cook C.M., Thomas A.W., Prato F.S. Resting EEG is affected by exposure to a pulsed ELF magnetic field // Bioelectromagnetics. 2004. Vol. 25(3). P. 196.
  5. Thomas A.W., Drost D.J., Prato F.S. Human subjects exposed to a specific pulsed (200 microT) magnetic field: effects on normal standing balance // Neurosci. Lett. 2001. Vol. 297. P. 121.
  6. Wachs H., Boshes B. Tremor studies in normals and in Parkinsonism // Arch. Neurol. 1961. Vol. 4. P. 66.
  7. Elble R.J., Koller W.C. Tremor. The John Hopkins University press, London, 1990.
  8. McAuley J.H., Marsden C.D. Physiological and pathological tremors and rhythmic central motor control // Brain. 2000. Vol. 123. P. 1545.
  9. Legros A., Beuter A. Effect of a low intensity magnetic field on human behavior // Bioelectromagnetics. 2006 (in press).
  10. Grossman A., Morlet J. Decomposition of hardy functions into square integrable wavelets of constant shape // S.I.A.M. J. Math. Anal. 1984. Vol. 15. P. 723; Daubechies I. Ten lectures on Wavelets. Philadelphie, S.I.A.M., 1992; Meyer Y. (ed.) Wavelets and Applications. Springer–Verlag, Berlin, 1992.
  11. Chui C.K. An Introduction to Wavelets. New York, Academic Press, 1992; Столниц Э., ДеРоуз Т., Салезин Д. Вейвлеты в компьютерной графике. Ижевск. НИЦ «Регулярная и хаотическая динамика», 2002; Короновский А.А., Храмов А.Е. Непрерывный вейвлетный анализ. Саратов, изд-во ГосУНЦ «Колледж», 2002.
  12. Janson N.B., Pavlov A.N., Anishchenko V.S. Global reconstruction: application to biological data and secure communication // Invited chapter in book Chaos and its reconstruction / Eds. G.Gouesbet, S.Meunier-Guttin-Cluzel. Novascience publishers, New York, 2003. P. 287.
  13. Mallat S.G. A Wavelet Tour of Signal Processing. San Diego, Academic Press, 1998.
  14. Muzy J.F., Bacry E., Arneodo A. The multifractal formalism revisited with wavelets // Int. J. Bifurcation and Chaos. 1994. Vol. 4. P. 245.
  15. Muzy J.F., Bacry E., Arneodo A. Multifractal formalism for fractal signals: the structure-function approach versus the wavelet-transform modulus-maxima method // Phys. Rev. E. 1993. Vol. 47. P. 875; Ivanov P.Ch., Nunes Amaral L.A., Goldberger A.L., Havlin S., Rosenblum M.G., Struzik Z.R., Stanley H.E. Multifractality in human heartbeat dynamics // Nature. 1999. Vol. 399. P. 461; Павлов А.Н., Зиганшин А.Р., Анищенко В.С. Мультифрактальный анализ временных рядов // Изв. вузов. Прикладная нелинейная динамика. 2001. T. 9. No 3. C. 39; Pavlov A.N., Sosnovtseva O.V., Ziganshin A.R., Holstein-Rathlou N.-H., Mosekilde E. Multiscality in the dynamics of coupled chaotic systems// Physica A. 2002. Vol. 316, P. 233.
  16. Астафьева Н.М. Вейвлет-анализ: основы теории и примеры применения //Успехи физических наук. 1996. Т. 166. No 11. С. 1145.  
Short text (in English):
(downloads: 25)