For citation:
Kapustnikov A. A., Sysoeva M. V., Sysoev I. V., Kornilov M. V. Interaction and synchronization of rhythms in a model of the brain limbic system. Izvestiya VUZ. Applied Nonlinear Dynamics, 2025, vol. 33, iss. 4, pp. 567-589. DOI: 10.18500/0869-6632-003179, EDN: WHUMCW
Interaction and synchronization of rhythms in a model of the brain limbic system
The purpose of this study is to build a mathematical network model for interaction of rhythms in the limbic system of the brain, when pathological epileptiform activity is spreading from the focus.
Methods. Based on well-known anatomical rules and biophysical laws, networks of model neurons are constructed for the hippocampus, the entorhinal and frontal cortex of both hemispheres. The task of chaotic dynamics synchronization in a relatively large network of heterogeneous neurooscillators by the signal of a ring generator of regular activity (a model of epileptic focus) was considered.
Results. The regular pulse activity was shown to be able partly synchronize of suppress own activity in the limbic system model despite significant differences between the model equations of different cell types and the presence of natural fundamental oscillation frequencies in the beta and gamma ranges, with some spectral peaks become shifted. This effect stays valid not for a single model, but for a class of models that differ by the connectivity matrices.
Conclusion. The mechanism of pathological rhythmic activity propagation from the epileptic focus to the whole limbic system is modelled for the first time, with using biologically relevant models of the limbic system of both brain hemispheres.
- Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, Hirsch E, Jain S, Mathern GW, Moshe SL, Nordli DR, Perucca E, Tomson T, Wiebe S, Zhang Y-H, Zuberi SM. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58(4):512–521. DOI: 10.1111/epi.13709.
- Coenen AML, van Luijtelaar ELJM. Genetic animal models for absence epilepsy: A review of the WAG/Rij strain of rats. Behav. Genet. 2003;33(6):635–655. DOI: 10.1023/A:1026179013847.
- Marescaux C, Vergnes M, Depaulis A. Genetic absence epilepsy in rats from Strasbourg – a review. In: Marescaux C., Vergnes M., Bernasconi R, editors. Generalized Non-Convulsive Epilepsy: Focus on GABA-B Receptors. Journal of Neural Transmission. Vol 35. Vienna: Springer; 1992. P. 37–69. DOI: 10.1007/978-3-7091-9206-1_4.
- Myslobodsky M, Rosen J. Hemispheric asymmetry of pentamethylenetetrazol-induced wave-spike discharges and motor imbalance in rats. Epilepsia. 1979;20(4):377–386. DOI: 10.1111/j.1528- 1157.1979.tb04817.x.
- Taylor PN, Wang Y, Goodfellow M, Dauwels J, Moeller F, Stephani U, Baier G. A Computational Study of Stimulus Driven Epileptic Seizure Abatement. PLoS ONE. 2014;9(12):e114316. DOI: 10.1371/journal.pone.0114316.
- Suffczynski P, Kalitzin S, Lopes Da Silva FH. Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience. 2004;126(2):467–484. DOI: 10.1016/ j.neuroscience.2004.03.014.
- Medvedeva TM, Sysoeva MV, Luttjohann A, van Luijtelaar G, Sysoev IV. Dynamical mesoscale model of absence seizures in genetic models. PLoS ONE. 2020;15(9):e239125. DOI: 10.1371/ journal.pone.0239125.
- Gerster M, Berner R, Sawicki J, Zakharova A, Skoch A, Hlinka J, Lehnertz K, Sch oll E. FitzHugh- Nagumo oscillators on complex networks mimic epileptic-seizure-related synchronization phenomena. Chaos. 2020;30(12):123130. DOI: 10.1063/5.0021420.
- Kapustnikov AA, Sysoeva MV, Sysoev IV. The modeling of spike-wave discharges in brain with small oscillatory neural networks. Mathematical Biology and Bioinformatics. 2020;15(2):138–147 (in Russian). DOI: 10.17537/2020.15.138.
- Alexander A, Maroso M, Soltesz I. Chapter 5 - Organization and control of epileptic circuits in temporal lobe epilepsy. Prog. Brain Res. 2016;226:127–154. DOI: 10.1016/bs.pbr.2016.04.007.
- Curia G, Longo D, Biagini G, Jones RS, Avoli M. The pilocarpine model of temporal lobe epilepsy. J. Neurosci. Methods. 2008;172(2):143–157. DOI: 10.1016/j.jneumeth.2008.04.019.
- Sutula T, Xiao-Xian H, Cavazos J, Scott G. Synaptic Reorganization in the Hippocampus Induced by Abnormal Functional Activity. Science. 1988;239(4844):1147–1150. DOI: 10.1126/science. 2449733.
- Babb T, Kupfer W, Pretorius J, Crandall P, Levesque M. Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience. 1991;42(2):351–363. DOI: 10.1016/0306- 4522(91)90380-7.
- Tauck DL, Nadler JV. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J. Neurosci. 1985;5(4):1016–1022. DOI: 10.1523/JNEUROSCI.05-04- 01016.1985.
- Yu Y, Han F, Wang Q. A hippocampal-entorhinal cortex neuronal network for dynamical mechanisms of epileptic seizure. IEEE Trans. Neural Syst. Rehabil. Eng. 2023;31:1986–1996. DOI: 10.1109/TNSRE.2023.3265581.
- Sloviter RS. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: The “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus. 1991;1(1):41–66. DOI: 10.1002/hipo.450010106.
- Bertram EH. The functional anatomy of spontaneous seizures in a rat model of chronic limbic epilepsy. Epilepsia. 1997;38(1):95–105. DOI: 10.1111/j.1528-1157.1997.tb01083.x.
- Toyoda I, Bower MR, Leyva F, Buckmaster PS. Early activation of ventral hippocampus and subiculum during spontaneous seizures in a rat model of temporal lobe epilepsy. J. Neurosci. 2013;33(27):11100–11115. DOI: 10.1523/JNEUROSCI.0472-13.2013.
- Kornilov MV, Sysoev IV. Mathematical model of a main rhythm in limbic seizures. Mathematics. 2023;11(5):1233. DOI: 10.3390/math11051233.
- Kornilov MV, Kapustnikov AA, Sozonov EA, Sysoeva MV, Sysoev IV. Synchronization regimes in the ring of rodent hippocampal neurons at limbic epilepsy. Izvestiya VUZ. Applied Nonlinear Dynamics. 2024;32(3):357–375. DOI: 10.18500/0869-6632-003113.
- FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1961;1(6):445-466. DOI: 10.1016/S0006-3495(61)86902-6.
- Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. Proceedings of the IRE. 1962;50(10):2061–2070. DOI: 10.1109/JRPROC.1962.288235.
- Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952;117(4):500–544. DOI: 10.1113/jphysiol.1952. sp004764.
- Yoshida M, Hayashi H. Emergence of sequence sensitivity in a hippocampal CA3–CA1 model. Neural Netw. 2007;20(6):653–667. DOI: 10.1016/j.neunet.2007.05.003.
- Egorov NM, Sysoeva MV, Ponomarenko VI, Kornilov MV, Sysoev IV. Ring generator of neuronlike activity with tunable frequency. Izvestiya VUZ. Applied Nonlinear Dynamics. 2023;31(1): 103–120. DOI: 10.18500/0869-6632-003025.
- McCarthy MM, Brown EN, Kopell NJ. Potential network mechanisms mediating electroencephalographic beta rhythm changes during propofol-induced paradoxical excitation. J. Neurosci. 2008; 28(50):13488–13504. DOI: 10.1523/JNEUROSCI.3536-08.2008.
- Ching S, Cimenser A, Purdon PL, Brown EN, Kopell NJ. Thalamocortical model for a propofolinduced alpha-rhythm associated with loss of consciousness. Proc. Natl Acad. Sci. USA. 2010; 107(52):22665–22670. DOI: 10.1073/pnas.1017069108.
- V-Ghaffari B, Kouhnavard M, Elbasiouny SM. Mixed-mode oscillations in pyramidal neurons under antiepileptic drug conditions. PLoS ONE. 2017;12(6):e0178244. DOI: 10.1371/journal. pone.0178244.
- Middleton S, Jozsi J, Kispersky T, Lebeau F, Roopun A, Kopell N, Whittington M, Cunningham M. NMDA receptor-dependent switching between different gamma rhythm generating microcircuits in entorhinal cortex. Proc. Natl Acad. Sci. USA. 2008;105(47):18572–18577. DOI: 10.1073/pnas. 0809302105.
- Acker CD, Kopell N, White JA. Synchronization of Strongly Coupled Excitatory Neurons: Relating Network Behavior to Biophysics. J. Comput. Neurosci. 2003;15:71–90. DOI: 10.1023/ a:1024474819512.
- Jalics J, Krupa M, Rotstein HG. Mixed-mode oscillations in a three time-scale system of ODEs motivated by a neuronal model. Dynamical Systems. 2010;25(4):445–482. DOI: 10.1080/ 14689360903535760.
- Dupret D, Pleydell-Bouverie B, Csicsvari J. Inhibitory interneurons and network oscillations. Proc. Natl Acad. Sci. USA. 2008;105(47):18079–18080. DOI: 10.1073/pnas.0810064105.
- 1017 reads