ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Ermolaev I. A., Shapovalov A. S. Investigation of particularities formation spatially periodic structures of multieddy isothermal electroconvection. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 3, pp. 51-61. DOI: 10.18500/0869-6632-2012-20-3-51-61

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 133)
Article type: 
532.5.013: 537.84: 519.64

Investigation of particularities formation spatially periodic structures of multieddy isothermal electroconvection

Ermolaev Igor Anatolevich, Saratov State University
Shapovalov Aleksandr Stepanovich, Saratov State University

Electroconvective flow in plane horizontal layer of dielectric liquid due to the crisis of the equilibrium layer stability loss in homogeneous electric field are numerically modeled.

  1. Busse FH. Transition to turbulence in Rayleigh-Beénard convection. In: Swinney HL, Gollub JP. Hydrodynamic Instabilities and the Transition to Turbulence. Topics in Applied Physics. Springer, Berlin, Heidelberg. 1981;45.  DOI: 10.1007/3-540-13319-4_15.
  2. Stishkov YuK. Observation of isothermal convection in the electric field of a flat capacitor. Electronic Processing of Materials. 1972;1:61–62 (in Russian).
  3. Fedonenko AI, Zhakin AI. Experimental studies of electroconvective motion in transformer oil. Magnetohydrodynamics. 1982;18(3):272–276.
  4. Stishkov YuK. Electrohydrodynamic flows and mechanisms of electrification of «technical» liquid dielectrics. Electronic Processing of Materials. 1977. No. 6. p. 29–32 (in Russian).
  5. Melcher J. Electrohydrodynamics. Magnetohydrodynamics. 1974;2:3–30 (in Russian).
  6. Rubashov IB, Bortnikov YuS. Electrogas dynamics. Moscow: Atomizdat; 1971. 167 p. (in Russian).
  7. Bologa MK, Grosu FP, Kozhukhar' IA. Electrical Conversion and Heat Transfer. Chisinau: Stiintsa; 1977. 320 p. (in Russian).
  8. Borishansky VM. Achievements in the field of heat transfer. Moscow: Mir; 1970. 456 p. (in Russian).
  9. Zaitsev VM, Shliomis MI. Hydrodynamic fluctuations near convection threshold. Sov. Phys. JETP. 1971;32(5):866–870.
  10. Busse FH, Whitehead JA. Instabilities of convection rolls in a high Prandtl number fluid. J. Fluid Mech. 1971;47(2):305–320. DOI: 10.1017/S0022112071001071.
  11. Ahlers G, Behringer RP. Evolution of turbulence from Rayleigh–Benard instability. Phys. Rev. Lett. 1978;40(11):712–716. P. 66. DOI: 10.1103/PhysRevLett.40.712.
  12. Getling AV. Rayleigh - Bénard Convection: Structures and Dynamics. Singapore: World Scientific; 1998.
  13. Gershuni GZ, Zhukhovitskii EM. Convective stability of incompressible liquid. Jerusalem: Keter Press; 1976.
  14. McCluskey FMJ, Atten P. Heat transfer enhancement by electroconvection resulting from an injected space charge between parallel plates. Int. J. Heat Mass Transfer. 1991;34(9):2237–2250. DOI: 10.1016/0017-9310(91)90050-O.
  15. Vorob'ev VS, Malyshenko SP, Petrin AB. The effect of electrically induced convection in dielectric liquids on convective heat transfer. High Temperature. 2006;44(6):887–897. DOI: 10.1007/s10740-006-0107-y.
  16. Tarunin EL, Yamshinina YA. Bifurcation of stationary solutions of the system of equations of electrohydrodynamics for unipolar injection. Fluid Dyn. 1994;29:319–324. DOI: 10.1007/BF02230763.
  17. Ostroumov G. Interaction between electric and hydrodynamic fields: Physical fundamentals of electrohydrodynamics. Moscow: Nauka; 1979. 320 p. (in Russian)
  18. Zhakin AI, Tarapov IE, Fedonenko AI. Experimental investigation of the conductivity mechanism of polar liquid dielectrics. Electronic Processing of Materials. 1983;5:37–41 (in Russian).
  19. Tarunin EL. Computational experiment in free convection problems. Irkutsk: Irkutsk Univ. Publ.; 1990. 228 p. (in Russian).
  20. Ermolaev IA, Zhbanov AI. Numerical investigation of unipolar injection in the presence of electroconvective motion in a plane layer of transformer oil. Fluid Dynamics. 2003;38(6):827–831. DOI: 10.1023/B:FLUI.0000015221.58577.a6.
  21. Zhakin AI, Tarapov IE. Instability and flow of a weakly conducting fluid in the presence of oxidation-reduction reactions at electrodes and recombination. Fluid Dyn. 1981;16:505–510. DOI: 10.1007/BF01094591.
  22. Ermolaev IA, Zhbanov AI. Investigation of the electroconvective flow of a weakly conducting liquid with unipolar injection conductivity by the finite element method. Journal of Engineering Physics and Thermophysics. 2002;75(5):1125–1129. DOI: 10.1023/A:1021115608171.
  23. Ermolaev IA, Shapovalov AS. Numerical investigation of spatially periodic rolls structures of liquid dielectrics isothermal electro-convection in a plane-parallel electrode system. Computer Research and Modeling. 2012;4(1):91–98 (in Russian).
  24. Venikov VA,  Zuev EN, Okolotin VS. Superconductors in High Power Systems. Moscow: Energiya; 1972. 169 p. (in Russian).
Short text (in English):
(downloads: 46)