For citation:
Suchkov S. V., Dmitriev S. V. Kink dynamics in the discrete Klein–Gordon model with asymmetric potential in the presence of AC driving. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 4, pp. 121-131. DOI: 10.18500/0869-6632-2010-18-4-121-131
Kink dynamics in the discrete Klein–Gordon model with asymmetric potential in the presence of AC driving
A discrete KleinGordon model with asymmetric potential that supports kinks free of the PeierlsNabarro potential (PNp) is constructed. Ratchet of kink under harmonic AC driving force is investigated in this model numerically and contrasted with the kink ratchet in the conventional discrete model where kinks experience the PNp. We show that the PNpfree kinks exhibit ratchet dynamics very much different from that reported for the conventional lattice kinks which experience PNp. Particularly, we could not observe any significant influence of the discreteness parameter on the acceleration of PNpfree kinks induced by the AC driving. A threshold value of the viscosity coefficient was found where the drift velocity of the kink changes sign.
- Braun OM, Kivshar YS. The Frenkel–Kontorova Model: Concepts, Methods, and Applications. Berlin: Springer; 2004.
- Flach S, Yevtushenko O, Zolotaryuk Y. Directed current due to broken time-space symmetry. Phys. Rev. Lett. 2000;84(11):2358–2361. DOI: 10.1103/PhysRevLett.84.2358.
- Reimann P. Supersymmetric ratchets. Phys. Rev. Lett. 2001;86(22):4992–4995. DOI: 10.1103/PhysRevLett.86.4992.
- Reimann P. Brownian motors: Noisy transport far from equilibrium. Phys. Rep. 2002;361:57–265. DOI: 10.1016/S0370-1573(01)00081-3
- Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walker P. Molecular biology of the cell. New York: Garland; 2002.
- Engelstadter J. Muller’s ratchet and the degeneration of Y chromosomes: A simulation study. Genetics. 2008;180(2):957–967. DOI: 10.1534/genetics.108.092379.
- Wang H, Oster G. Ratchets, power strokes, and molecular motors. Appl. Phys. A. 2002;75:315–323. DOI: 10.1007/s003390201340.
- Downton MT, Zuckermann MJ, Craig EM, Plischke M, Linke H. Single-polymer Brownian motor: A simulation study. Phys. Rev. E. 2006;73:011909. DOI: 10.1103/PhysRevE.73.011909.
- Molecular motors. Ed. Schliwa M. Weinheim: Wiley-VCH; 2003.
- Campas O, Kafri Y, Zeldovich KB, Casademunt J, Joanny JF. Collective dynamics of interacting molecular motors. Phys. Rev. Lett. 2006;97(3):038101. DOI: 10.1103/PhysRevLett.97.038101.
- Trias E, Mazo JJ, Falo F, Orlando TP. Depinning of kinks in a Josephson-junction ratchet array. Phys. Rev. E. 2000;61(3):2257–2266. DOI: 10.1103/PhysRevE.61.2257.
- Marconi VI. Rocking ratchets in two-dimensional Josephson networks: Collective effects and current reversal. Phys. Rev. Lett. 2007;98(4):047006. DOI: 10.1103/PhysRevLett.98.047006.
- Segall K, Dioguardi AP, Fernandes N, Mazo JJ. Experimental observation of fluxon diffusion in Josephson rings. Journal of Low Temperature Physics. 2009;154:41–54. DOI: 10.1007/s10909-008-9849-8.
- Gorbach AV, Denisov S, Flach S. Optical ratchets with discrete cavity solitons. Opt. Lett. 2006;31(11):1702–1704. DOI: 10.1364/ol.31.001702.
- Poletti D, Alexander TJ, Ostrovskaya EA, Li B, Kivshar YuS. Dynamics of matter-wave solitons in a ratchet potential. Phys. Rev. Lett. 2008;101(15):150403. DOI: 10.1103/PhysRevLett.101.150403.
- Perez-Junquera A, Marconi VI, Kolton AB, Alvarez-Prado LM, Souche Y, Alija A, Velez M, Anguita JV, Alameda JM, Martin JI, Parrondo JMR. Crossed-ratchet effects for magnetic domain wall motion. Phys. Rev. Lett. 2008;100(3):037203. DOI: 10.1103/PhysRevLett.100.037203.
- Marchesoni F. Thermal ratchets in 1+1 dimensions. Phys. Rev. Lett. 1996;77(12):2364–2367. DOI: 10.1103/PhysRevLett.77.2364.
- Kivshar YuS, Pelinovsky DE, Cretegny T, Peyrard M. Internal modes of solitary waves. Phys. Rev. Lett. 1998;80(23):5032–5035. DOI: 10.1103/PhysRevLett.80.5032.
- Willis CR, Farzaneh M. Soliton ratchets induced by excitation of internal modes. Phys. Rev. E. 2004;69:056612. DOI: 10.1103/PhysRevE.69.056612.
- Salerno M, Quintero NR. Soliton ratchets. Phys. Rev. E. 2002;65:025602. DOI: 10.1103/PhysRevE.65.025602.
- Morales-Molina L, Mertens FG, Sanchez A. Inhomogeneous soliton ratchets under two ac forces. Phys. Rev. E. 2006;73:046605. DOI: 10.1103/PhysRevE.73.046605.
- Costantini G, Marchesoni F, Borromeo M. String ratchets: ac driven asymmetric kinks. Phys. Rev. E. 2002;65(5):051103. DOI: 10.1103/PhysRevE.65.051103.
- Muller P, Mertens FG, Bishop AR. Chaotic transport in deterministic sine-Gordon soliton ratchets. Phys. Rev. E. 2009;79:016207. DOI: 10.1103/PhysRevE.79.016207.
- Zamora-Sillero E, Quintero NR, Mertens FG. Sine-Gordon ratchets with general periodic, additive, and parametric driving forces. Phys. Rev. E. 2007;76:066601. DOI: 10.1103/PhysRevE.76.066601.
- Quintero NR, Sanchez-Rey B, Salerno M. Analytical approach to soliton ratchets in asymmetric potentials. Phys. Rev. E. 2005;72:016610. DOI: 10.1103/PhysRevE.72.016610.
- Salerno M, Zolotaryuk Y. Soliton ratchetlike dynamics by ac forces with harmonic mixing. Phys. Rev. E. 2002;65:056603. DOI: 10.1103/PhysRevE.65.056603.
- Zolotaryuk Y, Salerno M. Discrete soliton ratchets driven by biharmonic fields. Phys. Rev. E. 2006;73:066621. DOI: 10.1103/PhysRevE.73.066621.
- Martinez PJ, Chacon R. Disorder induced control of discrete soliton ratchets. Phys. Rev. Lett. 2008;100(14):144101. DOI: 10.1103/PhysRevLett.100.144101.
- Kevrekidis PG. On a class of discretizations of Hamiltonian nonlinear partial differential equations. Physica D. 2003;183:68–86. DOI: 10.1016/S0167-2789(03)00153-2.
- Speight JM, Ward R.S. Kink dynamics in a novel discrete sine-Gordon system. Nonlinearity. 1994;7:475-484; Speight JM. A discrete 34 system without Peierls-Nabarro barrier. Nonlinearity. 1997;10:1615–1625; Speight JM. Topological discrete kinks. Nonlinearity. 1999;12:1373-1387.
- Bender CM, Tovbis A. Quasi-exactly solvable quartic potential. J. Math. Phys. 1997;38:3700–3717.
- Dmitriev SV, Kevrekidis PG, Yoshikawa N. Discrete Klein-Gordon models with static kinks free of the Peierls–Nabarro potential. J. Phys. A. 2005;38:7617–7627. DOI: 10.1088/0305-4470/38/35/002.
- Roy I, Dmitriev SV, Kevrekidis PG, Saxena A. Comparative study of different discretizations of the ϕ4 model. Phys. Rev. E. 2007;76(2):026601. DOI: 10.1103/PhysRevE.76.026601.
- Cooper F, Khare A, Mihaila B, Saxena A. Exact solitary wave solutions for a discrete λϕ4 field theory in 1+1 dimensions. Phys. Rev. E. 2005;72:036605. DOI: 10.1103/PhysRevE.72.036605.
- Barashenkov IV, Oxtoby OF, Pelinovsky DE. Translationally invariant discrete kinks from one-dimensional maps. Phys. Rev. E. 2005;72:035602. DOI: 10.1103/PhysRevE.72.035602.
- Dmitriev SV, Kevrekidis PG, Yoshikawa N. Standard nearest neighbor discretizations of Klein-Gordon models cannot preserve both energy and linear momentum. J. Phys. A. 2006;39:7217–7226.
- Oxtoby OF, Pelinovsky DE, Barashenkov IV. Travelling kinks in discrete ϕ4 models. Nonlinearity. 2006;19:217–235. DOI: 10.1088/0951-7715/19/1/011.
- Dmitriev SV, Kevrekidis PG, Yoshikawa N, Frantzeskakis DJ. Exact static solutions for discrete ϕ4 models free of the Peierls-Nabarro barrier: Discretized first-integral approach. Phys. Rev. E. 2006;74:046609.
- Speight JM, Zolotaryuk Y. Kinks in dipole chains. Nonlinearity. 2006;19(6):1365–1382. DOI: 10.1088/0951-7715/19/6/008.
- Dmitriev SV, Kevrekidis PG, Khare A, Saxena A. Exact static solutions to a translationally invariant discrete ϕ4 model. J. Phys. A. 2007;40:6267–6286. DOI: 10.1088/1751-8113/40/24/002.
- Khare A, Dmitriev SV, Saxena A. Exact static solutions of a generalized discrete ϕ4 model including short-periodic solutions; arXiv:0710.1460.
- 1895 reads