ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Fakhretdinov M. I., Ekomasov E. G. Kink dynamics in the φ4 model with two extended impurities. Izvestiya VUZ. Applied Nonlinear Dynamics, 2025, vol. 33, iss. 3, pp. 412-425. DOI: 10.18500/0869-6632-003156, EDN: LVTTLP

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Language: 
Russian
Article type: 
Article
UDC: 
530.182.1
EDN: 

Kink dynamics in the φ4 model with two extended impurities

Autors: 
Abstract: 

The purpose of this study is to use numerical methods to consider the problem of nonlinear kink dynamics for the φ4 equation in a model with two identical extended «impurities» (or spatial inhomogeneity of the potential).

Methods. The φ4 model with inhomogeneities was numerically solved using the method of lines for partial differential equations. The kink was launched in the direction of the inhomogeneities with different initial velocities. The distance between the two impurities was also varied. The kink trajectory after interaction with the impurities was studied. The discrete Fourier transform was used to find the oscillation frequencies of the kink after interaction with spatial inhomogeneities.

Results. The interaction between the kink and two identical extended impurities described by rectangular functions is described. Possible scenarios of kink dynamics are determined, taking into account resonance effects, depending on the magnitude of the system parameters and initial conditions. Critical and resonant velocities of the kink motion are found depending on the impurity parameters and the distance between them. Significant differences are observed in the kink dynamics when interacting with repulsive
and attractive impurities. It is established that among the found scenarios of kink dynamics for the case of extended rectangular impurities, there are scenarios of resonant kink dynamics obtained earlier for the case of one extended impurity, for example, quasi-tunneling and repulsion from an attractive potential.

Conclusion. An analysis of the influence of system parameters and initial conditions on possible scenarios of kink dynamics is carried out. Critical and resonant kink velocities are found as functions of the impurity parameters and the distance between them.

Reference: 
  1. Kevrekidis P., Cuevas-Maraver J. A Dynamical Perspective on the φ4 Model: Past, Present and Future (Nonlinear Systems and Complexity, 26). Cham: Springer, 2019. 332 p. DOI: 10.1007/978-3-030-11839-6.
  2. Belova T. I., Kudryavtsev A. E. Solitons and their interactions in classical field theory // Physics-Uspekhi. 1997. Vol. 40, no. 4. P. 359.
  3. Schneider T., Stoll E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions // Physical Review B. 1978. Vol. 17, no. 3. P. 1302.
  4. Bishop A. R. Defect states in polyacetylene and polydiacetylene // Solid State Communications. 1980. Vol. 33, no. 9. P. 955–960.
  5. Rice M. J., Mele E. J. Phenomenological theory of soliton formation in lightly-doped polyacetylene // Solid State Communications. 1980. Vol. 35, no. 6. P. 487–491.
  6. Yamaletdinov R. D., Slipko V. A., Pershin Y. V. Kinks and antikinks of buckled graphene: a testing ground for the φ4 field model // Physical Review B. 2017. Vol. 96, no. 9. P. 094306.
  7. Yamaletdinov R. D., Romanczukiewicz T., Pershin Y. V. Manipulating graphene kinks through positive and negative radiation pressure effects // Carbon. 2019. Vol. 141. P. 253– 257.
  8. Cuevas-Maraver J., Kevrekidis P., Williams F. The Sine-Gordon Model and Its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics. Cham: Springer, 2014. 263 p. DOI: 10.1007/978-3-319-06722-3.
  9. Belova T. I., Kudryavtsev A. E. Quasi-periodic orbits in the scalar classical φ4 field theory // Physica D: Nonlinear Phenomena. 1988. Vol. 32, no. 1. P. 18–26.
  10.  Marjaneh A. M., Saadatmand D., Zhou K., Dmitriev S. V., Zomorrodian M. E. High energy density in the collision of  kinks in the φ4 model // Communications in Nonlinear Science and Numerical Simulation. 2017. Vol. 49. P. 30–38.
  11.  Takyi I., Weigel H. Collective coordinates in one-dimensional soliton models revisited // Phys. Rev. D. 2016. Vol. 94, no. 8, P. 085008.
  12.  Malomed B. A. Perturbative analysis of the interaction of a phi4 kink with inhomogeneities // J. Phys. A: Math. Gen.. 1992. Vol. 25, no. 4. P. 755–764.
  13.  Fei Z., Kivshar Y. S., Vazquez L. Resonant kink-impurity interactions in the φ4 model // Phys. Rev. A. 1992. Vol. 46, no. 8. P. 5214–5220.
  14.  Romanczukiewicz T. Creation of kink and antikink pairs forced by radiation // J. Phys. A: Math. Gen.. 2006. Vol. 39, no. 13. P. 3479–3494.
  15.  Alonso Izquierdo A., Queiroga-Nunes J., Nieto L. M. Scattering between wobbling kinks // Phys. Rev. D. 2021. Vol. 103, no. 4, P. 045003.
  16.  Ablowitz M. J., Kruskal M. D., Ladik J. F. Solitary Wave Collisions // SIAM J. Appl. Math.. 1979. Vol. 36, no. 3. P. 428–437.
  17.  Goodman R. H., Haberman R. Kink-Antikink Collisions in the phi4 Equation: The n-Bounce Resonance and the Separatrix Map // SIAM J. Appl. Dyn. Syst.. 2005. Vol. 4, no. 4. P. 1195–1228.
  18.  Gani V. A., Kudryavtsev A. E., Lizunova M. A. Kink interactions in the (1+1)-dimensional 6 model // Phys. Rev. D. 2014. Vol. 89, no. 12, P. 125009.
  19.  Marjaneh A. M., Saadatmand D., Zhou K., Dmitriev S. V., Zomorrodian M. E. High energy density in the collision of  kinks in the φ4 model // Communications in Nonlinear Science and Numerical Simulation. 2017. Vol. 49. P. 30–38.
  20.  Yan H., Zhong Y., Liu Y. X., Maeda K. Kink-antikink collision in a Lorentz-violating φ4 model // Physics Letters B. 2020. Vol. 807. P. 135542.
  21.  Getmanov B. S. Bound states of solitons in the φ4 2 field theory model // Sov. Phys. JETP Lett. 1976. Vol. 24. P. 291–294.
  22.  Saadatmand D., Dmitriev S. V., Borisov D. I., Kevrekidis P. G., Fatykhov M. A., Javidan K. Effect of the φ4 kink’s internal mode at scattering on a PT-symmetric defect // Jetp Lett.. 2015. Vol. 101, no. 7. P. 497–502.
  23.  Saadatmand D., Javidan K. Collective-Coordinate Analysis of Inhomogeneous Nonlinear Klein–Gordon Field Theory // Braz J Phys. 2013. Vol. 43, no. 1-2. P. 48–56.
  24.  Arash G. Dynamics of φ4 Kinks by Using Adomian Decomposition Method. // American Journal of Numerical Analysis. 2016. Vol. 4, no. 1. P. 8–10.
  25.  Kalbermann G. Soliton tunneling // Phys. Rev. E. 1997. Vol. 55, no. 6. P. R6360–R6362.
  26.  Fakhretdinov M. I., Samsonov K. Y., Dmitriev S. V., Ekomasov E. G. Kink Dynamics in the φ4 Model with Extended Impurity // Nelin. Dinam. 2023. Vol. 19, no. 3. P. 303–320.
  27.  Fakhretdinov M. I., Samsonov K. Y., Dmitriev S. V., Ekomasov E. G. Attractive Impurity as a Generator of Wobbling Kinks and Breathers in the φ4 Model // Nelin. Dinam. 2024. Vol. 20, no. 1. P. 15–26.
  28.  Ekomasov E. G., Samsonov K. Y., Gumerov A. M., Kudryavtsev R. V. Nonlinear waves of the sine-Gordon equation in the model with three attracting impurities // Izvestiya VUZ. Applied Nonlinear Dynamics. 2022, Vol. 30, no. 6, P. 749–765.
  29.  Gonzalez J. A., Bellorn A., Garca-Nustes M. A., Guerrero L. E., Jimenez S., Vazquez L. Arbitrarily large numbers of kink internal modes in inhomogeneous sine-Gordon equations // Physics Letters A. 2017. Vol. 381, no. 24. P. 1995–1998.
  30.  Gumerov A. M., Ekomasov E. G., Murtazin R. R., Nazarov V. N. Transformation of sineGordon solitons in models with variable coefficients and damping // Computational Mathematics and Mathematical Physics. 2015. Vol. 55, no. 4. P. 628–637.
  31.  Ekomasov E. G., Gumerov A. M., Murtazin R. R. Interaction of sine-Gordon solitons in the model with attracting impurities // Math. Methods in App. Sciences. 2016. Vol. 40, no. 17. P. 6178–6186.
  32.  Ekomasov E. G., Gumerov A. M., Kudryavtsev R. V. Resonance dynamics of kinks in the sine-Gordon model with impurity, external force and damping // Journal of Computational and Applied Mathematics. 2017. Vol. 312. P. 198–208.
  33.  Ekomasov E. G., Gumerov A. M., Kudryavtsev R. V., Dmitriev S. V., Nazarov V. N. Multisoliton Dynamics in the Sine-Gordon Model with Two Point Impurities // Braz J Phys. 2018. Vol. 48, no. 6. P. 576–584.
  34.  Lizunova M. A., Kager J., de Lange S., van Wezel J. Kinks and realistic impurity models in 4-theory // Int. J. Mod. Phys. B. 2022. Vol. 36, no. 05.
  35.  Ekomasov E. G., Kudryavtsev R. V., Samsonov K. Y., Nazarov V. N., Kabanov D. К. Kink dynamics of the sine-Gordon equation in a model with three identical attracting or repulsive impurities // Izvestiya VUZ. Applied Nonlinear Dynamics. 2023, Vol. 31, no. 6, P. 693–709.
  36.  Schiesser W. E. The numerical method of lines: integration of partial differential equations. Academic Press: Elsevier, 2012. 326 p. ISBN: 9780128015513.
Received: 
11.11.2024
Accepted: 
27.11.2024
Available online: 
10.12.2024