ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Ryashko L. B. Lyapunov functions technique for stability analysis and stabilization of invariant 2-torus. Izvestiya VUZ. Applied Nonlinear Dynamics, 2001, vol. 9, iss. 4, pp. 140-154. DOI: 10.18500/0869-6632-2001-9-4-140-154

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
517.51+517.52

Lyapunov functions technique for stability analysis and stabilization of invariant 2-torus

Autors: 
Ryashko Lev Borisovich, Ural Federal University named after the first President of Russia B.N.Yeltsin
Abstract: 

Based on the introduced toroidally quadratic Lyapunov functions technique the exponential stability problem of an invariant 2-torus of nonlinear system is investigated. This problem is reduced to analysis of а boundary value decision problem for appropriate matrix differential Lyapunov equation. In connection with some projector P a concept of P-stability of linear system is introduced. Thus P-stability of the first approximation system is necessary and sufficient condition for 2-torus stability. In a three-dimensional case, the matrix differential Lyapunov equation degenerates into scalar one and its solution is reduced to the solution of some linear functional equation. From analysis of this functional equation е integral parametric stability criterion is deduced. The obtained results are used for construction of the stabilizing regulator.

Key words: 
Acknowledgments: 
The work was supported by the RFBR (project № 00-01-00076).
Reference: 

-

Received: 
13.02.2001
Accepted: 
15.05.2001
Published: 
08.02.2002