ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Vysotskii S. L., Kozhevnikov A. V., Kazakov G. T., Nikitov S. A., Filimonov Y. A. Magnetostatic surface waves parametric instability in two-dimensional (2D) magnonic crystals. Izvestiya VUZ. Applied Nonlinear Dynamics, 2007, vol. 15, iss. 3, pp. 58-73. DOI: 10.18500/0869-6632-2007-15-3-58-73

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 272)
Article type: 

Magnetostatic surface waves parametric instability in two-dimensional (2D) magnonic crystals

Vysotskii S. L., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Kozhevnikov Aleksandr Vladimirovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Kazakov Gennadij Timofeevich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Nikitov Sergej Apollonovich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Filimonov Y. A., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

First order (three-magnon) parametric instability of magnetostatic surface waves (MSSW) was experimentally studied in two-dimensional (2D) magnonic crystals with rhombic and square lattices with lattice parameter 37–40 µm. The instability was produced by etching of holes 32 µm in diameter and 1–2 µm in depth in the 16 µm-thick yttrium iron garnet (YIG) film. It was found, that MSSW threshold powers for parametric instability development in case of 2D magnonic crystals are of the order of two times greater than analogous threshold values for starting YIG films. This effect was treated as a consequence of an increase of the spin waves relaxation rate in 2D magnonic crystals due to scattering processes. It was shown, that for moderate levels of the MSSW overcriticallity the parametric instability processes don’t destroy the forbidden band in spin wave spectra. The growing of the MSSW parametric instability threshold was observed in conditions of the MSSW effective hybridization with exchange spin waves, travelling at an angle 90◦ with respect to the bias magnetic field. 

Key words: 
  1. Joannopouls JD, Meade RD, Winn JN. Photonic Crystals: Molding the Flow of Light. Princeton University Press; 1995.
  2. Sakoda K. Optical Properties of Photonic Crystals. Springer Series in Optical Sciences, Springer Verlag; 2001.
  3. Vinogradov AP, Erokhin SG, Granovskii AB, Inoue M. The polar Kerr effect in multilayer systems (magnetophotonic crystals). Journal of Communications Technology and Electronics. 2004;49(6):682–685.
  4. Yayoi K, Osada M, Inoue M, et al. Digest of 2000 IEEE Inter. Magn. Conf. Toronto; 2000.
  5. Vasseur JO, Dobrzynski L, Dijafari-Rouhani B, Puszkarski H. Magnon band structure in of periodic composites. Phys. Rev. B. 1996;54:1043–1049. DOI: 10.1103/PhysRevB.54.1043.
  6. Al-Wahsh H, Akjouj A, Dijafari-Rouhani B, et. al. Large magnonic band gaps and defect modes in one-dimensional comblike structures. Phys. Rev. B. 1999;59:8709–8719. DOI: 10.1103/PhysRevB.59.8709.
  7. Figotin A, Vitebsky I. Nonreciprocal magnetic photonic crystals. Phys. Rev. E.  2001;63:066609. DOI: 10.1103/PhysRevE.63.066609.
  8. Nikitov SA, Taihades Ph, Tsai CS. Spin waves in periodic magnetic structures-magnonic crystals. J. Magn. Magn. Mater. 2001;236(3):320–330. DOI: 10.1016/S0304-8853(01)00470-X.
  9. Gulyaev YuV, Nikitov SA. Magnonic crystals and spin waves in periodic structures. Doklady Physics. 2001;46(10):687–689. DOI: 10.1134/1.1415579.
  10. Gulyaev YuV, Nikitov SA, Zhivotovskii LV. et al. Ferromagnetic films with magnon bandgap periodic structures: Magnon crystals. JETP Letters.  2003;77(10):567–570. DOI: 10.1134/1.1595698.
  11. Vysotskii SL, Nikitov SA, Filimonov YuA. Magnetostatic spin waves in two-dimensional periodic structures (magnetophoton crystals). Journal of Experimental and Theoretical Physics. 2005;101(3):547–553. DOI: 10.1134/1.2103224.
  12. Salanskii NM, Yerukhimov MS. The Physical Properties and Applications of Magnetic Films. Novosibirsk; Nauka; 1975. (in Russian)
  13. Bespyatykh Yu., Zubkov VI, Tarasenko VV. Influence of surface anisotropy and thermal electron velocity dispersion on the instability of surface magnetostatic waves in the ferrite-semiconductor structure. Solid State Physics. 1977;19(11):3409. (in Russian)
  14. Wolfram T, de Wames RE. Linewidth and dispersion of the virtual magnon surface state in thick ferromagnetic films. Phys. Rev. B. 1970;1(11):4358–4360. DOI: 10.1103/PhysRevB.1.4358.
  15. Gurevich AG, Melkov GA. Magnetic oscillations and waves. Moscow: Fizmatlit; 1994, 464 p.
  16. Mednikov AM. Nonlinear effects in the propagation of surface spin waves in YIG-films. Sov. Phys. Solid State. 1981;23(1):242–245. (in Russian)
  17. Temiryazev AG. Mechanism of surface magnetostatic wave frequency conversion under three-magnon decay conditions. Physics of the Solid State. 1987;29(2):313–319.
  18. Chivileva OA, Gurevich AG, Anisimov AN, Gusev BN, Vugal'ter VA, Sher ES. Threshold fields and magnetizations under parametric spin wave excitation by a surface magnetostatic ware. Physics of the Solid State. 1987;29(6):1774–1782.
  19. Kazakov GT, Kozhevnikov AV, Filimonov YuA. Four-magnon decay of magnetostatic surface waves in yttrium iron garnet films. Physics of the Solid State. 1997;39(2):288–295. DOI: 10.1134/1.1129801.
  20. Kazakov GT, Kozhevnikov AV, Filimonov YuA. The effect of parametrically excited spin waves on the dispersion and damping of magnetostatic surface waves in ferrite films. Journal of Experimental and Theoretical Physics. 1999;88(1):174–181. DOI: 10.1134/1.558780.
  21. Galishnikov AA, Dudko GM, Kozhevnikov AV, Nikitov SA, Filimonov YA. Magnetostatic surface wave pulses self-action effects under propagation in ferrite-dielectric-metal structures. Izvestiya VUZ. Applied Nonlinear Dynamics. 2006;14(3):3–33. DOI: 10.18500/0869-6632-2006-14-3-3-33.
  22. Vashkovsky AV, Stalmakhov VS, Sharaevsky YuP. Magnetostatic Waves in Microwave Electronics. Saratov: SGU; 1993. 312 p. (in Russian)
  23. Sharaevskij JP, Grishin SV, Maljugina MA. Nonlinear transmission lines on the basis of coupled systems with ferromagnetic films. Izvestiya VUZ. Applied Nonlinear Dynamics. 2006;14(3):34–50. DOI: 10.18500/0869-6632-2006-14-3-34-50.
  24. Mathieu C, Synogach VT, Patton CE. Brillouin light scattering analysis of threemagnon splitting processes in yttrium iron garnet films. Phy. Rev. B. 2003;67:10442.
  25. Lemons RA, Auld DA. The effects of field strength and orientation on magnetostatic wave propagation in an anisotropic ferrimagnetic plate. J. Appl. Phys. 1981;52(12):7360.
  26. Damon RW, Eshbach JR. Magnetostatic modes of a ferromagnet slab. J. Phys. Chem. Solids. 1961;19(3/4):308–320. DOI: 10.1016/0022-3697(61)90041-5.
  27. Kazakov GT, Sukharev AG, Filimonov YuA. Exchange radiative losses of Damon-Eshbach surface magnetostatic waves in YIG films. Physics of the Solid State. 1990;32(12):3571–3578. 
  28. Lvov V. Nonlinear Spin Waves. Moscow: Nauka; 1987. (in Russian)
  29. Temiryazev AG, Tikhomirova MP. Three-Magnon Decay of Exchange Spin Wave. JETP Letters 1995;61(11):910–915.
  30. Gulyaev YuV, Nikitov SA, Plesskii VP. Reflection of Surface Magnetostatic Waves from a Periodically Uneven Ferrite Surface. Sov. Phys. Solid State. 1981;23(4):724–726.
Short text (in English):
(downloads: 76)