ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Cite this article as:

Nekorkin V. I., Vdovin L. V. Map-based model of the neural activity. Izvestiya VUZ. Applied Nonlinear Dynamics, 2007, vol. 15, iss. 5, pp. 36-60. DOI: https://doi.org/10.18500/0869-6632-2007-15-5-36-60

Language: 
Russian

Map-based model of the neural activity

Abstract: 

A two-dimensional model exhibiting the chaotic spiking-bursting activity of real neurons is proposed. The model is given by the discontinuous two-dimensional map. It is constructed on the basis of the discrete modi?cation of the FitzHugh–Nagumo model and one-dimensional Lorenz type map. We have studied the dynamics of the system, found the conditions on the parameters under which chaotic attractor exists. The structure and properties of the attractor is studied. This attractor mimics spiking-bursting oscillations. We have also showed that map is applicable for simulation of other regimes of neural oscillatory activity such as subthreshold oscillations and periodic and chaotic spiking or it could be used for modeling of threshold excitability property of the neurons.

Key words: 
DOI: 
10.18500/0869-6632-2007-15-5-36-60
References: 

1. Kandel E.R., Schwartz J.H., Jessell T.M. Principles of neural science. Prentice-Hall Int. Inc., 1991. 2. Rabinovich M.I., Varona P., Selverston A.I., Abarbanel H.D.I. Dynamical principles in neuroscience // Reviews of Modern Physics. 2006. Vol. 78, 4. P. 1213. 3. Hodgkin A.L., Huxley A.F. A quantitative description of membrane current and application to conduction and excitation in nerve // J. Physiol. Vol. 117. P. 500. 4. Потапов А.Б., Али М.К. Нелинейная динамика обработки, используемая в нейронных сетях // В кн. Новое в синергетике: взгляд в третье тысячелетие. М.: Наука, 2002. 5. FitzHugh R. Mathematical models of the threshold phenomena in the nerve membrane // Bull. Math. Biophys. 1955. Vol. 17. P. 257. 6. Hindmarsh J.L., Rose R.M. A model of neuronal bursting using three coupled first order differential equations // Philos. Trans R. Soc. London, Ser. B221. 1984. P. 87. 7. Morris C., Lecar H. Voltage oscillations in the barnacle giant muscle fiber // Biophys. J. 1981. Vol. 25. P. 87. 8. Chialvo D.R. Generic excitable dynamics on the two-dimensional map // Chaos Solutions Fract. 1995. Vol. 5. P. 461. 9. Kinouchi O., Tragtenberg M. Modeling neurones by simple maps // Int. J. Bifurcation Chaos. 1996. Vol. 6, No 12a. P. 2343. 10. Kuva S., Lima G., Kinouchi O. Tragtenberg M., Roque A. A minimal model for excitable and bursting element // Neurocomputing 2001. Vol. 38-40. P. 255. 11. de Vries G. Bursting as an emergent phenomenon in coupled chaotic maps // Phys. Rev. E. 2001. Vol. 64. P. 051914. 12. Bazhenov M., Rulkov N.F., Fellous J.-M., Timofeev I. Role of network dynamics in shaping spike timing reliability // Phys. Rev. E. 2005. Vol. 72. P. 041902. 13. Rulkov N.F., Timofeev I., Bazhenov M. Oscillations in large-scale cortical networks: map-based model // J. of Computational Neuroscince. 2004. Vol. 17. P. 203. 14. Su H., Alroy G., Kirson E.D., Yaari Y. Extracellular calcium modulates persistent sodium current-dependent burst-firing in hippocampal pyramidal neurones // Journal of Neuroscience. 2001. Vol. 21. P. 4173. 15. Gray C.M., Mc Cormick D.A. Chattering cells: superficial pyromidal neurones contributing to the generation of synchronous oscillations in the visual cortex // Science. 1996. 274 (5 284). P. 109. 16. Connors B.W., Gutnick M.J. Intrinsic firing patterns of diverse neocortical neurones // Trends in Neuroscience. 1990. Vol. 13. P. 99. 17. Lisman J. Bursts as a unit of neural information: making unreliable synapses reliable. Trends in Neuroscience. 1997. Vol. 20. P. 38. 18. Izhikevich E.M., Desai N.S., Walcott E.C., Hoppensteadt F.C. Bursts as s unit of neural information: selective communication via resonance // Trends in Neuroscience. 2003. Vol. 26. P. 161. 19. Izhikevich E.M., Hoppensteadt F. Classification of bursting mappings // Int. J. Bifurcation and Chaos. 2004. Vol. 14, No 11. P. 3847. 20. Cazellis B., Courbage M., Rabinovich M. Anti-phase regularization of coupled chaotic maps modeling bursting neurons // Europhysics Letters. 2001. Vol. 56 (4). P. 504. 21. Rulkov N.F. Modeling of spiking-bursting neural behavior using two-dimensional map // Phys. Rev. E. 2002. Vol. 65. P. 0.41922. 22. Shilnikov A.L., Rulkov N.F. Origin of chaos in a two dimensional map modeling spiking-bursting neural activity // Int. J. Bifurc. Chaos. 2003. Vol. 13, No 11. P. 3325. 23. Rulkov N.F. Regularization of synchronized chaotic bursts // Phys. Rev. Lett. 2001. Vol. 86. p. 183. 24. Shilnikov A.L., Rulkov N.F. Subthreshold oscillations in a map-based neuron model // Physics Letters A. 2004. Vol. 328. P. 177. 25. Tanaka G. Synchronization and propagation of bursts in networks of coupled map neurons. Chaos, 16, 2006, 013113 26. Llinas R. I of vortex. From Neurones to Self.The MIT Press, Massachusettes, 2002. 27. Llinas R. and Yarom Y. Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: An in vitro study // J. Physol., Lond. 1986. Vol. 315. P. 569. 28. Afraimovich V.S., Sze-Bi Hsu. Lectures on Chaotic Dynamical Systems. American Mathematical Society. Int. Press, 2003, 354 p. 29. Afraimovich V.S., Shilnikov L.P. Strange attractors and quasiattractors // In the book «Nonlinear Dynamics and Turbulence» / eds. G.I. Barenblatt, G. Iooss, D.D. Joseph. Pitam, Boston, 1983. P. 1. 30. Arnold V.I., Afraimovich V.S., Ilyashenko Yu.S., Shilnikov L.P. Bifurcation Theory, Dyn. Sys. V. Encyclopaedia Mathematics Sciences, Springer, Berlin, 1994. 31. Llinas R. Rebound excitation as the physiological basis for tremor: a biological study of the oscillatory properties of mammalian central neuron in vitro. Movements Disorders: Tremor / Eds L.J. Findley and R. Capildeo. London: Macmillan, 1984. P. 135. 32. Bernardo L.S., Foster R.P. Oscillatory behavior in inferior olive neurones: mechanism, modulation, cell aggregates // Brain Res. Bull. 1986. Vol. 17. P. 773. 33. Traub R.D., Jefferys J.G.R., Whittington M.A. Fast Oscillations in Cortical Circuits. The MIT Press, Massachusetts, 1999. 34. R.S.K. Wang and Prince D.A. Afterpotential generation in hippocampal pyramidal cells // J. Neurophysiol. 1981. Vol. 45. P. 86. 35. Deschenes M., Roy J.P. and Steriade M. Thalamic bursting mechanism: an inward slow current revealed by membrane hyperpolarization // Brain Res. 1982. Vol. 239. P. 289.  

Short text (in English):
(downloads: 9)
Full text:
(downloads: 12)