ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


The article published as Early Access!

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
530.182
EDN: 

Markers of patients’ condition after orthodontic treatment: application of recurrent analysis to EEG data obtained during cognitive tests

Autors: 
Selskii Anton Olegovich, Saratov State University
Emelyanova Elizaveta Petrovna, Saratov State University
Abstract: 

The purpose of this study — is to study the differences in recurrent indicators based on electroencephalography signals of patients after orthodontic treatment during cognitive tests. Depending on the type of impact (installation of braces or aligners), identify markers in the canals, which can be used to further determine the strength of stress from orthodontic intervention for subsequent correction of treatment.

Methods. Recurrence analysis was used to study electroencephalography data. In particular, recurrent indicators were constructed for each channel of each patient.

Results. The channels in which changes in recurrent indicators with different types of orthodontic influence are the greatest are demonstrated. For these channels, the dynamics of recurrent indicators in them is described to highlight some markers of stress and pain experienced by the patient.

Conclusion. In the course of the study, recurrent indices were constructed based on the electroencephalography data of patients after orthodontic treatment. It was shown that the highest differences in patients of different groups were demonstrated by the temporal and occipital canals (O1, O2, T3, T4, T5, T6). Thus, the value of recurrent indices of this group of indices should be used as a marker of the patient’s condition.

Acknowledgments: 
The work was supported by the Russian Science Foundation, project No. 23-72-01021
Reference: 
  1. Bulut OC, Wallner F, Oladokun D, Kayser C, Plath M, Schulz E, Plinkert PK, Baumann I. Longterm quality of life changes after primary septorhinoplasty. Qual Life Res. 2018;27(4):987–991. DOI: 10.1007/s11136-017-1761-8.
  2. de Araujo CM, Schroder AGD, de Araujo BMM, Cavalcante-Leao BL, Stechman-Neto J, Zeigelboim BS, Santos RS, Guariza-Filho O. Impact of orthodontic-surgical treatment on quality of life: a meta-analysis. European Journal of Orthodontics. 2020;42(3)281–289. DOI: 10.1093/ejo/cjz093.
  3. Parkin NA, Almutairi S, Benson PE. Surgical exposure and orthodontic alignment of palatally displaced canines: can we shorten treatment time? Journal of Orthodontics. 2019;46:54–59. DOI: 10.1177/146531251984138.
  4. Zimmo N, Saleh MH, Mandelaris GA, Chan HL, Wang HL. Corticotomy-Accelerated Orthodontics: A Comprehensive Review and Update. Compend. Contin. Educ. Dent. 2017;38(1):17–25.
  5. Dab S, Chen K, Flores Mir C. Short- and long-term potential effects of accelerated osteogenic orthodontic treatment: A systematic review and meta-analysis. Journal of Orthodontics. 2019;22(2): 61–68. DOI: 10.1111/ocr.12272.
  6. Zhuravlev M, Novikov M, Parsamyan R, Selskii A, Runnova A. The Objective Assessment of Event-Related Potentials: An Influence of Chronic Pain on ERP Parameters. Neurosci. Bull. 2023;39(7):1105–1116. DOI: 10.1007/s12264-023-01035-8.
  7. Makarov VV, Zhuravlev MO, Runnova AE, Protasov P, Maksimenko VA, Frolov NS, Pisarchik AN, Hramov AE. Betweenness centrality in multiplex brain network during mental task evaluation. Phys. Rev. E. 2018;98:062413. DOI: 10.1103/PhysRevE.98.062413.
  8. Maksimenko VA, Runnova AE, Zhuravlev MO, Protasov P, Kulanin R, Khramova MV, Pisarchik AN, Hramov AE. Human personality reflects spatio-temporal and time-frequency EEG structure. PloS One. 2018;13(9):e0197642. DOI: 10.1371/journal.pone.0197642.
  9. Miyamoto I, Yoshida K, Bessho K. Shortened dental arch and cerebral regional blood volume: an experimental pilot study with optical topography. Cranio. 2009;27:94–100. DOI: 10.1179/crn.2009.015.
  10. Kordass B, Lucas C, Huetzen D, Zimmermann C, Gedrange T, Langner S, Domin M, Hosten N. Functional magnetic resonance imaging of brain activity during chewing and occlusion by natural teeth and occlusal splints. Ann. Anat. 2007;189:371–376. DOI: 10.1016/j.aanat.2007.02.027.
  11. Morokuma M. Influence of the functional improvement of complete dentures on brain activity. Nihon Hotetsu Shika Gakkai Zasshi. 2008;52:194–199. DOI: 10.2186/jjps.52.194.
  12. Ono Y, Yamamoto T, Kubo KY, Onozuka M. Occlusion and brain function: mastication as a prevention of cognitive dysfunction. J. Oral Rehabil. 2010;37(8):624–640. DOI: 10.1111/j.1365-2842.2010.02079.x.
  13. Zanetti M, Faes L, Nollo G, De Cecco M, Pernice R, Maule L, Pertile M, Fornaser A. Information Dynamics of the Brain, Cardiovascular and Respiratory Network during Different Levels of Mental Stress. Entropy. 2019;21(3):275. DOI: 10.3390/e21030275.
  14. Pollatos O, Schandry R, Auer DP, Kaufmann C. Brain structures mediating cardiovascular arousal and interoceptive awareness. Brain Research. 2007;1141:178–187. DOI: 10.1016/j.brainres.2007.01.026.
  15. Yang YX, Gao ZK, Wang XM, Li YL, Han JW, Marwan N, Kurths J. A recurrence quantification analysis-based channel-frequency convolutional neural network for emotion recognition fromEEG. Chaos. 2018;28(8):085724. DOI: 10.1063/1.5023857.
  16. Chou EF, Khine M, Lockhart T, Soangra R. Effects of ECG Data Length on Heart Rate Variability among Young Healthy Adults. Sensors. 2021;21(18):6286. DOI: 10.3390/s21186286.
  17. Terrill PI, Wilson SJ, Suresh S, Cooper DM, Dakin C. Characterising non-linear dynamics in nocturnal breathing patterns of healthy infants using recurrence quantification analysis. Computers in Biology and Medicine. 2013;43(4):231–239. DOI: 10.1016/j.compbiomed.2013.01.005.
  18. Parro VC, Valdo L. Sleep-wake detection using recurrence quantification analysis. Chaos. 2018;28(8):085706. DOI: 10.1063/1.5024692.
  19. Jenkins BN, Hunter JF, Richardson MJ, Conner TS, Pressman SD. Affect variability and predictability: Using recurrence quantification analysis to better understand how the dynamics of affect relate to health. Emotion. 2020;20(3):391–402. DOI: 10.1037/emo0000556.
  20. Rojas GM, Alvarez C, Montoya CE, de la Iglesia-Vaya M, Cisternas JE, Galvez M. Study of Resting-State Functional Connectivity Networks Using EEG Electrodes Position As Seed. Front. Neurosci. 2018;12:235. DOI: 10.3389/fnins.2018.00235.
  21. Acharya UR, Sree SV, Swapna G, Martis RJ, Suri JS. Automated EEG analysis of epilepsy: A review. Knowledge-Based Systems. 2013;45:147–165. DOI: 10.1016/j.knosys.2013.02.014.
  22. Acharya UR, Sree SV, Chattopadhyay S, Yu W, Ang PC. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. International Journal of Neural Systems. 2011;21(3):199–211. DOI: 10.1142/S0129065711002808.
  23. Eckmann J-P, Kamphorst SO, Ruelle D. Recurrence Plots of Dynamical Systems. Europhysics Letters. 1987;4(9):973. DOI: 10.1209/0295-5075/4/9/004.
  24. Marwan N, Romano MC, Thiel M, Kurths J. Recurrence plots for the analysis of complex systems. Physics Reports. 2007;438:237. DOI: 10.1016/j.physrep.2006.11.001.
  25. Zhuravlev M, Suetenkova D., Parsamyan R, Runnova A, Simonyan M, Nasrullaev R, Kiselev A, Suetenkov D. Changes in EEG oscillatory patterns due to acute stress caused by orthodontic correction. Eur. Phys. J. Spec. Top. 2024;233:505–518. DOI: 10.1140/epjs/s11734-023-01064-4.
Received: 
12.09.2023
Accepted: 
20.12.2024
Available online: 
16.01.2025